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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(I) INTRO


The typical correlation measurement used is Pearson’s r.  Kendall’s tau (of which there are a few variants [a, b, c] and I focus on a and b here) is a rank-based (i.e., ordinal) measure of association between two variables.  It is a useful alternative to r when:
	-ordinal data
	-non-normal distributions
	-non-linear monotonic bivariate relationship (e.g., perfect exponential relationship)
	-also, it’s resistant to outliers.

Spearman’s rho and Goodman & Kruskal’s gamma (the latter often used in metamemory research) are two other major alternatives.  Spearman’s rho is just Pearson’s r performed on ranked data (i.e., you convert each data point within a variable into a rank order, usually with 1 assigned to the lowest value, 2 to the second-lowest etc.).  This makes it better than r when the assumptions for r are violated.  Rho was preferred to tau before everyone had supercomputers; now, tau should probably be generally preferred (I’m not clear on why).  Gamma seems to be as useful as tau as long as there are no ties in the ranked data.  When there are ties, gamma disregards those data, as does tau-a.  Thus, if there are many ties, tau-b should be used, as it is more conservative.  Tau-c is another version of tau that accounts for ties, but it’s not preferred (and I forget why).	Comment by Jason Finley: Hmm, it could be that gamma has been preferred because calculating the SE (and thus comparing gammas) has been better known for longer.  Because aside from the ties issue, gamma and tau seem very similar.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(II) CALCULATING TAU-A and TAU-B

N = number of subjects

C = number of concordances (may also be referred to as P)
D = number of discordances (may also be referred to as Q)

You have 2 variables, call them X and Y.  You should have NO MISSING CELLS.  So exclude from analysis any subjects who are missing either an X or a Y value.  You’ll also need an index/ID number for each row.  So, something like:

SubNum	X	Y
1	45	16
2	12	34
3	11	2
4	12	15

i = index1
j = index2

Go through all possible pairings of subjects (for i = 1 to N { for j = 1 to N { … exclude pairings where i = j) and for each ij :
	if ((Xi > Xj & Yi > Yj) OR (Xi < Xj & Yi < Yj)) that’s a CONCORDANCE.  (that is, if X and Y “agree” on which subject should be ranked higher, which also means that the sign of the (Xi-Xj) difference is the same as the sign of the (Yi-Yj) difference)
	if X and Y “disagree” on which subject should be ranked higher, then that’s a DISCORDANCE.
	if Xi = Xj or Yi = Yj (or both), then that’s a TIE and it doesn’t count as either a concordance or discordance.


Tau-a (aka txy) is calculated as follows (from Woods, 2007, table 1):

 where:
Tx = # of ties on just X
Ty = # of ties on just Y
Txy = # of ties on both X and Y

Tau-a does not take into consideration ties.  If there are many ties, as will be the case if your data are ordinal (e.g., you have an integer 1-7 for X and Y for each subject), then this is a problem.  That’s what Tau-b is for.  Tau-b handles ties.  it is calculated as follows (from Woods, 2007, table 1):


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(III) CALCULATING STANDARD ERRORS FOR TAU-A

(note: be sure to be careful and not lose track of variances vs SDs/SEs)
(another note: I’m use the lowercase t to represent the sample Tau)

So far so good.  Now the tricky thing is to get standard errors (SE) for individual Tau-a and Tau-b, and for comparing two Tau-as or two Tau-bs.  Once we’ve got those, we can do null hypothesis significance tests (e.g., test a Tau against null hypothesis value of zero, or test a difference of two Taus against zero) and/or make confidence intervals.

Once you get a variance here, you’ll just take the square root and that will give you both the standard deviation (SD) and the standard error (SE).  Here SD=SE.  There’s no need to correct the SD like we would with the mean (i.e., SE = SD/SQRT(N-1)).  I’m not sure exactly why, but I think it’s because Tau, and the SD we estimate from it, is a random variable and unbiased estimator of the population values…  or maybe that the estimated variances have already been corrected to be unbiased…  Anyway, Woods 2007 specifically notes that:  “The formulas cited in this paragraph have been simpliﬁed so that SE = SQRT(variance); division by N is unnecessary.”

There are two major approaches to deriving the variance of a tau: randomization, and parametric (and two different methods of the latter: unbiased, and consistent).  For now I’m just going to cover doing this all for tau-a.  I’ll get back to tau-b.

(A) Randomization approach
	This approach assumes that X and Y are independent, and thus can really only be used to test that specific null hypothesis of independence.  It also takes advantage of the fact that tau is asymptotically normal (approaches normality with large sample sizes).
Here’s the formula

var(txy) = (4N + 10) / (9N(N-1))

(B) Parametric approach
	This approach does NOT assumes independence between X and Y.  It estimates the population variance of tau from the sample.  There are two different methods within this approach (most clearly differentiated by Woods, 2007; see also Cliff 1996a): unbiased and consistent.  The consistent estimates are recommended over the unbiased estimates by Long & Cliff (1997), Cliff (1996a), and Woods (2007).

	tijxy: for a given pair of subjects (exclude i = j), this value is 1 if concordance, -1 if discordances, and 0 if tied on X or Y or both.

	(B.1) Unbiased
		The unbiased variance for tau-a is calculated as follows (from Woods, 2007, equation 7) [note that there are two major terms in it that need to be further defined]:


Note: if the estimated value from that formula ends up being ≤ 0, then you should instead use the following (Cliff, 1996a, p 61):


Now to define the two as-yet-undefined components of the formula for the unbiased variance of tau-a.  The below formulas are also from Woods 2007:
(a)

(b)

	Ha!  Wait, what’s ti.xy?  Okay, that is:
	
So you can see, you’re going to have to loop through all possible pairings of subjects, excluding i=j, just like you originally did to calculate tau in the first place, so you can calculate tijxy for each valid pairing, and then you’ll have to compute ti.xy for each subject (i.e., each possible value of i) by summing tijxy over all other subjects and dviding the sum by N-1, then also compute the squared deviation of ti.xy from txy (aka the tau-a value you calculated) and sum those squared deviations and divide by N which gives you (b) above, then to get (a) you’ll have to compute a squared deviation of each tijxy from txy (tau-a) and sum all those and divide by N(N-1).  THEN you can put together the pieces to calculate the unbiased variance of tau-a.  This whole procedure will either require a bunch of columns and array formulas in Excel, or for loops in R (or MatLab or whatever).
	Remember, once you’ve got the variance for a tau, take the square root and that’s your SE.

	(B.2) Consistent
		These are the ones you actually want to use.


***NOTE***: major differences between this formula and the unbiased formula given earlier:
	(N-2) in numerator instead of (N-1)
	PLUS SIGN in numerator instead of minus sign
	denominator is N(N-1) instead of (N-2)(N-3)
Also, the components in the numerator, (a) and (b), are different in that another 1 is subtracted from the denominator.  I use notation a little different from Woods 2007.

	(a)
	


	(b)
	
	and ti.xy is again:
	
Great!  Now you’ve got the consistent variance estimate of a tau-a.  You can use that to do a z-test of tau-a against the null hypothesis of zero.  Why z instead of t?  I’m not sure, but that’s how Cliff and Woods do it, and that’s how it’s done for r correlations too, I think.  z = (txy-0)/SEtxy

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(IV) CALCULATING STANDARD ERRORS FOR TAU-B

This gets difficult.  It looks like the variance we get for tau-b is asymptotic (i.e., randomization?) rather than unbiased or consistent.  No one has yet apparently taken on the task of figuring out an unbiased or consistent estimate of variance for tau-b.   One thing is for sure though: in calculating the SE for tau-b, we want to use the CONSISTENT estimates of tau-a variances wherever variances are needed.  We’re also going to need covariances, and I’m only going to bother defining the consistent versions of those for now (not the unbiased versions).

So, we already have txy (aka tau-a), and can get the consistent variance for that.  Now we’re also going to need txx and tyy and the variances for those.  From Woods (2007): txx is “the probability that a pair is not tied on X”.  Here’s the formula for txx:

tijx: is 0 if the pair i,j is tied on X, and 1 otherwise.
Remember to exclude “pairs” where i=j (since that would just be comparing a single subject to him/herself, so of course it’s going to be a tie!).  Tyy is computed the same way, just replace all the Xs in the above formula with Ys, and tiyy is 0 if a pair ties on Y and 1 otherwise.

Great, now we’re ready for the formula for the variance of tau-b, from Woods (2007, equation 14):



Criminey.  Note that this formula is broken up over two lines.  It also might make calculation a little easier to separately calculate the two major components.  Quick note: when you see  that just means you square the txy value you’ve got.  Now, the main things we’re missing in order to compute the above are the covariances of two tau-a values.  Woods 2007 also gives unbiased formulas for these (Appendix A).  I’m just going to give the consistent ones here.

Consistent covariance between two tau-a values:

Again, there are two components that need to be defined.
	(a)
	
	(b)
	

So basically, all the same kinda crap you had to do for getting the consistent variance of tau-a, you’ll have to do to get these covariances too.  Note that the above 3 formulas give you the covariance between txx and txy.  The order doesn’t matter here.  Also, the same formulas can be used to get covariance between any other two tau-a values, for example: txx and tyy, or tyy and txy.

Do all this and you’ll get your estimated SE for a tau-b, based on the consistent variances of tau-a.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(V) CALCULATING STANDARD ERRORS FOR DIFFERENCES BETWEEN TAUS

Okay, major leagues here.
I’m not sure whether to use z or t for the significance test. Cliff (1996b, p 341), says to use z-test to compare taus.  Other main option would be t-test, but I'm not sure what appropriate df would be.  Maybe: for independent: df=N1+N2-4,  for dependent with two taus drawing on same variable: df=N-3, and for dependent with two taus drawing on different variables: df=N-4.  These are just my best guesses, based on the number of parameters that are estimated in each case.
Anyway, whether you’re comparing two tau-as or two tau-bs, the test statistic is going to be, say: z = (txy – tab)/SEtxy-tab

Getting the SE is the hard part.
The big question is whether the two taus you have are INDEPENDENT or DEPENDENT.  If you’re comparing taus between-subjects and neither of the taus draw on the same variable, it’s independent.  If you’re comparing taus between-subjects and the two taus both draw on the same variable (i.e., you’ve got txy and txz), then it’s dependent.  If you’re comparing taus within-subjects, whether they draw on the same variable or not, then it’s dependent.

SE of Difference in Independent case (Cliff, 1996b, p 341):

	
	Note this is the same approach we’d take for calculating the pooled standard error for the between-subjects t-test (comparing two independent means).  Whether you’re comparing tau-as or tau-bs, you just compute the individual SEs as above and then use those to get the pooled SE and you’re all set.  Too easy.  (Note also that SE^2 is the same as variance here.)

SE of Difference in Dependent case (Cliff, 1996b, p 341):

	
	Note this is the same approach we’d take for calculating the pooled standard error for the within-subjects t-test (comparing two dependent means).  Actually in those cases we usually take the shortcut and just compute single difference score for each subject and then do a single-sample t-test on that, which saves us the trouble of calculating covariances.  Alas, no such shortcut is available when comparing taus, because we only have two overall tau values, not two values for each subject.
	We’ve already gone over how to get the variance for tau-a and tau-b.  Obviously, the covariance component is the biggest pain in the ass here.  If you’re comparing two dependent tau-as, then you can use the same (consistent) formula used earlier to get the covariance and then be on your way.  If you’re comparing two dependent tau-bs, you’re basically screwed.  No, just kidding, it’s possible, but extremely difficult.  This is virtually guaranteed to be most elite thing you’ll have to do all day.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(VI) CALCULATING THE COVARIANCE BETWEEN TAU-Bs

(One note first: This REQUIRES equal sample sizes for the data sets for both taus, and that the data be matched/paired across all variables you’re using.  So be sure to exclude from analysis any subjects who are missing even a single datum on any of the variables involved.)

Welcome to the rarefied super-elite status of being one of probably just a handful of people in the world (as of 2-4-2010) who are bad-ass enough to attempt this.  There’s only ONE place EVER (so far, and that I’ve found) that anyone has figured out and published the way to calculate the covariance between two tau-bs, and (get this) the formula printed has a mistake!  Holy crap.  Okay, here it is, from Cliff & Charlin (1991, formula 20), brace yourselves foolz!!!:

Ah yes, matrix algebra.  And yes, sorry, that’s the best resolution copy I have (from the PDF of the article from the journal; could probably get a nice image from a paper copy).
	The first thing to note is that, although the purpose of this formula is to calculate the covariance between two tau-bs, the contents of these matrices are actually all going to be based on the tau-a values.  So you’ll either be multiplying together several tau-a values, or computing the covariance between two tau-as.
	The second thing to note is that this formula uses subscripts 1,2,3,4 to refer to the 4 different variables involved, and are equivalent to what I’ve been referring to as: x, y, a, b (though keep in mind, in some cases there will really be only 3 variables total involved because you’re comparing taus that draw on a common variable, like say txy vs tay.  but the same formula above would still be used… I think.  you’d just do, say, cov(txy,tay),cov(txy,taa),cov(txy,tyy) for the top row of the 2nd matrix, and the bottom-right cell of the 2nd matrix would just end up being a variance, that is: cov(tyy,tyy)=var(tyy) ).
	There are 3 matrices.  (REMEMBER: matrix multiplication is not commutative, so order matters!  A*B≠B*A necessarily.)  The first matrix has one column and three rows.  In case you can’t tell, the first item in the first matrix, converting to my notation of 1=x,2=y,3=a,4=b, is: (txx*tyy)^-.5 .  The second item in the 1st matrix is: (-.5)*(txy)*(txx^(-3/2))*(tyy^-.5) . Etc.
	HERE’S THE BIG MISTAKE in the above formula: The first matrix should be HORIZONTAL, not vertical!  That is, it should have 1 row and 3 columns, rather than 3 rows and 1 column.  If it’s vertical, then the matrices cannot be multiplied together.  So rotate the goddamn thing first.  The topmost item should become the leftmost, and the bottommost item should become the rightmost.
	The 3rd matrix is just like the 1st matrix except using the second set of variables (a and b in my notation).  But the third matrix SHOULD be vertical here.
	The 2nd matrix is just awful.  It’s got nine different covariances in it, none of which you’ve probably already calculated.  The good news is that you can just use the consistent tau-a covariance formulas as provided in section IV above.  The bad news is that this is a huge pain in the ass.  You’re going to have to go through all that crap of summing squared deviations and everything for a bunch more different combinations of variables.  But that all works the same way as it did before.
	When you get your matrices filled in, you’ll do matrix1 * matrix2 = matrixTemp.  Then do matrixTemp * matrix3.  Go to http://en.wikipedia.org/wiki/Matrix_multiplication for info on how to do matrix multiplication, or just get a computer program to do it for you.  This will result in ONE NUMBER!  That number is the covariance between tau-b for xy and tau-b for ab.  Congratulations.  Now you can plug that into the formula in section V for the SE of Difference in Dependent case, and you can finally compute your test statistic.  Or make a confidence interval (which I’ve conspicuously not covered here, but should be do-able from all this info, and also Cliff and Woods talk about it, etc.).


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
References

Cliff, N. (1996a). Ordinal methods for behavioral data analysis. Mahwah, NJ: Erlbaum.
Cliff, N. (1996b). Answering ordinal questions with ordinal data using ordinal statistics. Multivariate Behavioral Research, 31(3), 331-350.
Cliff, N., & Charlin, V. (1991). Variances and covariances of Kendall’s tau and their estimation. Multivariate Behavioral Research, 26, 693–707. 
Long, J. D., & Cliff, N. (1997). Confidence intervals for Kendall’s tau. British Journal of Mathematical and Statistical Psychology, 50, 31–41.
Woods, C. M. (2007). Confidence intervals for gamma-family measures of ordinal association. Psychological Methods, 12, 185–204.
Woods, C. M. (2009). Consistent small-sample variances for six gamma-family measures of ordinal association. Multivariate Behavioral Research, 44, 525-551.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
R code from Woods 2009.
http://www.artsci.wustl.edu/~cwoods/CCvarR.html

# compute CC variances for all gamma family measures 
# Carol M. Woods, 2008 

rm(list = ls()) 

# read in case record data from text file 
raw = scan(file="C:/CC variances/empirical example/crs.txt", what=list(row=0,col=0)) 

n = 30 #number of observations (sum of all table frequencies) 
ncols = 3 #number of ordered categories for the column variable 
nrows = 3 #number of ordered categories for the row variable 

RowVar = raw$row 
ColVar = raw$col 

# define function (below) before calling it 
CCse(n,RowVar,ColVar) 

# the function writes results to an output file: GamFamCIs.out 
# on my machine, the output file is created here: C:\Program 
Files\R\rw2010 

####################### function definition ######################## 

CCse <- function(n, RowVar, ColVar) { 
tij = matrix(c(0),nrow=n,ncol=n) #this is tau-sub-ijxy 
t2ij = matrix(c(0),nrow=n,ncol=n) #tau-sub-ijxy SQUARED 
tijxx = matrix(c(0),nrow=n,ncol=n) #this is tau-sub-ijxx, no ties on X 
tijyy = matrix(c(0),nrow=n,ncol=n) #this is tau-sub-ijyy, no ties on Y 
sumtidot = matrix(c(0),nrow=1,ncol=n) 
sumt2idot = matrix(c(0),nrow=1,ncol=n) 
sumtidotxx = matrix(c(0),nrow=1,ncol=n) 
sumtidotyy = matrix(c(0),nrow=1,ncol=n) 
tidot = matrix(c(0),nrow=1,ncol=n) 
t2idot = matrix(c(0),nrow=1,ncol=n) 
tidotxx = matrix(c(0),nrow=1,ncol=n) 
tidotyy = matrix(c(0),nrow=1,ncol=n) 

sumtij=sumt2ij=sumtijxx=sumtijyy=txx=tyy=txy=t2=0 
vartidot=vart2idot=vartij=vart2ij=vartijxx=vartijyy=0 
covXxXy=vartidotxx=varTxx=covYyXy=vartidotyy=varTyy=0 
sti=sti2=stij=st2ij=stixx=stijxx=stiyy=stijyy=0 

varTxyC=varT2C=varTxxC=varTyyC=0 
varDyxC=varDxyC=varbC=varTauC=varKim=varGam=varE=varLgyx=varLgxy=0 
seTxyC=seDyxC=seDxyC=sebC=SeTauC=SeKim=seGam=seLgyx=seE=seLgxy=0 
part1c=part2c=0 
derivTauc=derivTxyKim=derivTxxKim=derivTyyKim=derivTxyGam=derivT2Gam=0

dTxyLgyx=dTxxLgyx=dT2Lgyx=dTxyLgxy=dTyyLgxy=dT2Lgxy=dTxyE=dTxxE=dTyyE=dT2E=0 
ta=tb=sdy=sdx=gamma=wilson_e=tauc=lgyx=lgxy=kimsym=0

covijxx=covijyy=covij2=covidotxx=covidotyy=covidot2=covijxxC=covijyyC=covij2C=0

covidotxxC=covidotyyC=covidot2C=covXxXyC=covYyXyC=covXxYyC=cov2XyC=covidotxxyy=0

covijxxyy=covidotxxyyC=covijxxyyC=cov2XxC=covidot2XxC=covij2XxC=covidot2xx=0 
covij2xx=cov2YyC=covidot2YyC=covij2YyC=covidot2yy=covij2yy=0

outfile = file(description="GamFamCIs.out", open="a") 

for (i in 1:n) { 
for (j in 1:n) { 
if ( ((RowVar[i] > RowVar[j]) && (ColVar[i] > ColVar[j])) || (RowVar[i] < RowVar[j]) && (ColVar[i] < ColVar[j])) { 
tij[i,j] = 1 
t2ij[i,j] = 1 #square of tij 
tijxx[i,j] = 1 
tijyy[i,j] = 1 
} #end if concordant 
if ( ((RowVar[i] > RowVar[j]) && (ColVar[i] < ColVar[j])) || (RowVar[i] < RowVar[j]) && (ColVar[i] > ColVar[j])) { 
tij[i,j] = -1 
t2ij[i,j] = 1 
tijxx[i,j] = 1 
tijyy[i,j] = 1 
} #end if discordant 
if ((RowVar[i] == RowVar[j]) && (ColVar[i] != ColVar[j])) { 
tij[i,j] = 0 
t2ij[i,j] = 0 
tijxx[i,j] = 0 
tijyy[i,j] = 1 
} #end if ties on X only 
if ((RowVar[i] != RowVar[j]) && (ColVar[i] == ColVar[j])) { 
tij[i,j] = 0 
t2ij[i,j] = 0 
tijxx[i,j] = 1 
tijyy[i,j] = 0 
} #end if ties on Y only 
if ((RowVar[i] == RowVar[j]) && (ColVar[i] == ColVar[j])) { 
tij[i,j] = 0 
t2ij[i,j] = 0 
tijxx[i,j] = 0 
tijyy[i,j] = 0 
} #end if ties on both X and Y 
} #end j 
} #end i 

for (i in 1:n) { 
for (j in 1:n) { 
sumtij = sumtij + tij[i,j] 
sumt2ij = sumt2ij + t2ij[i,j]	
sumtijxx = sumtijxx + tijxx[i,j] 
sumtijyy = sumtijyy + tijyy[i,j] 


sumtidot[i] = sumtidot[i] + tij[i,j] 
sumt2idot[i] = sumt2idot[i] + t2ij[i,j] 
sumtidotxx[i] = sumtidotxx[i] + tijxx[i,j] 
sumtidotyy[i] = sumtidotyy[i] + tijyy[i,j] 
} 
} 
tidot = sumtidot/(n-1)	#tidotxy for tau-xy = tau-a 
t2idot = sumt2idot/(n-1) #for tijxy squared	
tidotxx = sumtidotxx/(n-1) #tau sub i.xx for Somers' dyx 
tidotyy = sumtidotyy/(n-1) #for Somers' dxy 


txy = sumtij/(n*(n-1)) #this is tau-a 
t2 = sumt2ij/(n*(n-1)) #(square tijxy then sum over pairs) 
txx = sumtijxx/(n*(n-1)) 
tyy = sumtijyy/(n*(n-1)) 


#(co)variances of tau-ijxy, -ijxx, -ijyy 
for (i in 1:n) { 
for (j in 1:n) { 
if (i!=j) { #important for variances...covariances too 
stij = stij + ((tij[i,j] - txy)*(tij[i,j] - txy)) 
st2ij = st2ij + ((t2ij[i,j] - t2) *(t2ij[i,j] - t2)) 
stijxx = stijxx + ((tijxx[i,j] - txx)*(tijxx[i,j] - txx)) #for Somers' dyx 
stijyy = stijyy + ((tijyy[i,j] - tyy)*(tijyy[i,j] - tyy)) #for Somers' dxy 
covijxx = covijxx + ((tijxx[i,j] - txx)*(tij[i,j] - txy)) 
covijyy = covijyy + ((tijyy[i,j] - tyy)*(tij[i,j] - txy)) 
covijxxyy = covijxxyy + ((tijyy[i,j] - tyy)*(tijxx[i,j] - txx)) #for tau-b 
covij2 = covij2 + ((t2ij[i,j] - t2) * (tij[i,j] - txy)) 
covij2xx = covij2xx + ((t2ij[i,j] - t2) * (tijxx[i,j] - txx)) 
covij2yy = covij2yy + ((t2ij[i,j] - t2) * (tijyy[i,j] - tyy)) 
} 
}
}
vartij = stij/((n*(n-1))-1) 
vart2ij = st2ij/((n*(n-1))-1) 
vartijxx = stijxx/((n*(n-1))-1) 
vartijyy = stijyy/((n*(n-1))-1) 
covijxxC = covijxx/((n*(n-1))-1) 
covijyyC = covijyy/((n*(n-1))-1) 
covijxxyyC = covijxxyy/((n*(n-1))-1) 
covij2C = covij2/((n*(n-1))-1) 
covij2XxC = covij2xx/((n*(n-1))-1) 
covij2YyC = covij2yy/((n*(n-1))-1) 


#(co)variances of tau-i.xy, -i.xx, -i.yy 
for (i in 1:n){ 
sti = sti + ((tidot[i] - txy) *(tidot[i] - txy)) 
sti2 = sti2 + ((t2idot[i] - t2) *(t2idot[i] - t2)) 
stixx = stixx + ((tidotxx[i] - txx)*(tidotxx[i] - txx)) 
#for Somers' dyx 
stiyy = stiyy + ((tidotyy[i] - tyy)*(tidotyy[i] - tyy)) 
#for Somers' dxy 
covidotxx = covidotxx + ((tidotxx[i] - txx)*(tidot[i] - txy)) 
covidotyy = covidotyy + ((tidotyy[i] - tyy)*(tidot[i] - txy)) 
covidotxxyy = covidotxxyy + ((tidotyy[i] - tyy)*(tidotxx[i] - txx)) #for tau-b 
covidot2 = covidot2 + ((t2idot[i] - t2) * (tidot[i] - txy)) 
covidot2xx = covidot2xx + ((t2idot[i] - t2) * (tidotxx[i] - txx)) 
covidot2yy = covidot2yy + ((t2idot[i] - t2) * (tidotyy[i] - tyy)) 
} 
vartidot = sti/(n-1) 
vart2idot = sti2/(n-1) #for tijxy squared 
vartidotxx = stixx/(n-1) 
vartidotyy = stiyy/(n-1) 


covidotxxC = covidotxx/(n-1) 
covidotyyC = covidotyy/(n-1) 
covidotxxyyC = covidotxxyy/(n-1) 
covidot2C = covidot2/(n-1) 
covidot2XxC = covidot2xx/(n-1) 
covidot2YyC = covidot2yy/(n-1) 

#variances 
#for tau-a = tau-xy 
varTxyC = (((4*(n-2))*vartidot) + (2*vartij))/(n*(n-1)) 
seTxyC = sqrt(varTxyC) #no division by n 
#for tau-xx 
varTxxC = (((4*(n-2))*vartidotxx) + (2*vartijxx))/(n*(n-1)) 
#for tau-yy 
varTyyC = (((4*(n-2))*vartidotyy) + (2*vartijyy))/(n*(n-1)) 
#for tau-2 which is tau-xy squared 
varT2C = (((4*(n-2))*vart2idot) + (2*vart2ij))/(n*(n-1)) 


#covariances 
#between tau-xx and tau-xy 
covXxXyC = ((4*(n-2)*covidotxxC) + (2*covijxxC))/(n*(n-1)) 
#between tau-yy and tau-xy 
covYyXyC = ((4*(n-2)*covidotyyC) + (2*covijyyC))/(n*(n-1)) 
#between tau-xx and tau-yy 
covXxYyC = ((4*(n-2)*covidotxxyyC) + (2*covijxxyyC))/(n*(n-1)) 
#between tau-xy and tau-2 
cov2XyC = ((4*(n-2)*covidot2C) + (2*covij2C))/(n*(n-1)) 
#between tau-xx and tau-2 
cov2XxC = ((4*(n-2)*covidot2XxC) + (2*covij2XxC))/(n*(n-1)) 
#between tau-yy and tau-2 
cov2YyC = ((4*(n-2)*covidot2YyC) + (2*covij2YyC))/(n*(n-1)) 

## CC variances ## 

#tau-c 
m = ncols #ncols and nrows are global variables 
if (nrows < ncols) m = nrows 
derivTauc = (n*m*(n-1))/((n*n)*(m-1)) 
varTauC = derivTauc*derivTauc*varTxyC 
SeTauC = sqrt(varTauC) 

#Kim's symmetric d 
derivTxyKim = 2/(tyy+txx) 
derivTxxKim = (-2*txy)/((tyy+txx)*(tyy+txx)) 
derivTyyKim = derivTxxKim 
varKim = (derivTxyKim*derivTxyKim*varTxyC) + (derivTxxKim*derivTxxKim*varTxxC) + (derivTyyKim*derivTyyKim*varTyyC) + (2*derivTxyKim*derivTyyKim*covYyXyC) + 
     	 (2*derivTxyKim*derivTxxKim*covXxXyC) + (2*derivTxxKim*derivTyyKim*covXxYyC) 
SeKim = sqrt(varKim) 

#gamma 
derivTxyGam = 1/t2 
derivT2Gam = -txy/(t2*t2) 
varGam = (derivTxyGam*derivTxyGam*varTxyC) + (derivT2Gam*derivT2Gam*varT2C) + (2*derivTxyGam*derivT2Gam*cov2XyC) 
seGam = sqrt(varGam) 

#Leik-Gove d-Yx 
dTxyLgyx = 1/((2*txx)- t2) #deriv w.r.t. txy 
dTxxLgyx = (-2*txy)/(((2*txx)-t2)*((2*txx)-t2)) #deriv w.r.t. txx 
dT2Lgyx = txy/(((2*txx)-t2)*((2*txx)-t2)) #deriv w.r.t. t2 
varLgyx = (dTxyLgyx*dTxyLgyx*varTxyC) + (dTxxLgyx*dTxxLgyx*varTxxC) + (dT2Lgyx*dT2Lgyx*varT2C) + (2*dTxyLgyx*dTxxLgyx*covXxXyC) + 
     	 (2*dTxyLgyx*dT2Lgyx*cov2XyC) + (2*dTxxLgyx*dT2Lgyx*cov2XxC) 
seLgyx = sqrt(varLgyx) 

#Leik-Gove d-Xy 
dTxyLgxy = 1/((2*tyy)-t2) #deriv wrt txy 
dTyyLgxy = (-2*txy)/(((2*tyy)-t2)*((2*tyy)-t2)) #deriv wrt tyy 
dT2Lgxy = txy/(((2*tyy)-t2)*((2*tyy)-t2)) #deriv wrt t2 
varLgxy = (dTxyLgxy*dTxyLgxy*varTxyC) + (dTyyLgxy*dTyyLgxy*varTyyC) + (dT2Lgxy*dT2Lgxy*varT2C) + (2*dTxyLgxy*dTyyLgxy*covYyXyC) + 
     	 (2*dTxyLgxy*dT2Lgxy*cov2XyC) + (2*dTyyLgxy*dT2Lgxy*cov2YyC)	
seLgxy = sqrt(varLgxy) 

#Wilson e 
dTxyE = 1/(txx + tyy - t2) #deriv wrt txy 
dTxxE = -txy/((txx + tyy - t2)*(txx + tyy - t2)) #deriv wrt txx 
dTyyE = dTxxE #deriv wrt tyy is the same 
dT2E = txy/((txx + tyy - t2)*(txx + tyy - t2)) #deriv wrt t2 numerator positive 
varE = (dTxyE*dTxyE*varTxyC) + (dTxxE*dTxxE*varTxxC) + (dTyyE*dTyyE*varTyyC) + (dT2E*dT2E*varT2C) + (2*dTxyE*dTxxE*covXxXyC) + (2*dTxyE*dTyyE*covYyXyC) + 
     	 (2*dTxyE*dT2E*cov2XyC) + (2*dTxxE*dTyyE*covXxYyC) + (2*dTxxE*dT2E*cov2XxC) + (2*dTyyE*dT2E*cov2YyC) 
seE = sqrt(varE) 

#tau-b 
#(from Cliff 1996 p.79 but includes denom. from Cliff & Charlin p. 700)	
part1c = varTxyC - (txy*((covXxXyC/txx)+(covYyXyC/tyy))) 
part2c = (txy*txy)*((varTxxC/(4*txx*txx))+(varTyyC/(4*tyy*tyy))+(covXxYyC/(2*txx*tyy))) 
varbC = (part1c + part2c)/(txx*tyy) 
sebC = sqrt(varbC) 

#Somers' dyx 
varDyxC = (varTxyC/(txx*txx)) - (((2*txy)*covXxXyC)/(txx*txx*txx)) + ( (txy*txy*varTxxC)/(txx*txx*txx*txx)) 
seDyxC = sqrt(varDyxC) 

#Somers' dxy varDxyC = (varTxyC/(tyy*tyy)) - (((2*txy)*covYyXyC)/(tyy*tyy*tyy)) + ( (txy*txy*varTyyC)/(tyy*tyy*tyy*tyy)) 
seDxyC = sqrt(varDxyC) 

#point estimates of gamma family indices 

ta = txy 
tb = txy/(sqrt(txx*tyy)) 
gamma = txy/t2	
wilson_e = sumtij/(sumtijxx + sumtijyy - sumt2ij) 

m = ncols #ncols and nrows are global 
if (nrows < ncols) m = nrows 
tauc = sumtij/((n*n)*((m-1)/m)) 

sdy = txy/txx 
sdx = txy/tyy 
lgyx = sumtij/((2*sumtijxx) - sumt2ij) 
lgxy = sumtij/((2*sumtijyy) - sumt2ij) 
kimsym = sumtij/(.5*(sumtijyy + sumtijxx)) 

#to output file 

cat(
" gamma: ", gamma, " SE: ", seGam, "\n", "\n", 
"tau-a: ", ta, " SE: ", seTxyC, "\n", "\n", 
"tau-b: ", tb, " SE: ", sebC, "\n", "\n", 
"wilson e: ", wilson_e, " SE: ", seE, "\n", "\n", 
"tau-c: ", tauc, " SE: ", SeTauC, "\n", "\n", 
"Somers' dyx: ", sdy, " SE: ", seDyxC, "\n", "\n", 
"Somers' dxy: ", sdx, " SE: ", seDxyC, "\n", "\n", 
"leik-gove yx: ", lgyx, " SE: ", seLgyx, "\n", "\n", 
"leik-gove xy: ", lgxy, " SE: ", seLgxy, "\n", "\n", 
"kims symmetric: ", kimsym, " SE: ", SeKim, "\n", 
file=outfile,append=TRUE) 

close(outfile) 
} #end CCse


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Some R code I adapted from Woods 2009, gives results for comparing two tau-bs for independent and dependent case.

####################### function definition; adapted by Jason R Finley 2-4-2010 from Woods 2009 ########################

CCseJRFc <- function(X, Y, A, B, outputname) {


#there MUST be the same number of subjects in all 4 columns submitted to this function.
#be sure to remove rows that have any empty cells before calling this function.

n = length(X)


####### Declare variables for X and Y
    tijxy = matrix(c(0),nrow=n,ncol=n) #this is tau-sub-ijxy
    t2ijxy = matrix(c(0),nrow=n,ncol=n) #tau-sub-ijxy SQUARED
    tijxx = matrix(c(0),nrow=n,ncol=n) #this is tau-sub-ijxx, no ties on X
    tijyy = matrix(c(0),nrow=n,ncol=n) #this is tau-sub-ijyy, no ties on Y
    sumtidotxy = matrix(c(0),nrow=1,ncol=n)
    sumt2idotxy = matrix(c(0),nrow=1,ncol=n)
    sumtidotxx = matrix(c(0),nrow=1,ncol=n)
    sumtidotyy = matrix(c(0),nrow=1,ncol=n)
    tidotxy = matrix(c(0),nrow=1,ncol=n)
    t2idotxy = matrix(c(0),nrow=1,ncol=n)
    tidotxx = matrix(c(0),nrow=1,ncol=n)
    tidotyy = matrix(c(0),nrow=1,ncol=n)

    sumtijxy=sumt2ijxy=sumtijxx=sumtijyy=txx=tyy=txy=t2xy=0
    vartidotxy=vart2idotxy=vartijxy=vart2ijxy=vartijxx=vartijyy=0
    covXxXy=vartidotxx=varTxx=covYyXy=vartidotyy=varTyy=0
    stixy=sti2xy=stijxy=st2ijxy=stixx=stijxx=stiyy=stijyy=0

    varTxyC=varT2xyC=varTxxC=varTyyC=0
    varbxyC=varGamxy=0
    
    sebxyC=seGamxy=0
    part1cxy=part2cxy=0
    derivTxyGam=derivT2xyGam=0
    txya=txyb=gammaxy=0

    covijXxXy=covijYyXy=covij2XyXy=covidotXxXy=covidotYyXy=covidot2XyXy=covijXxXyC=covijYyXyC=covij2XyXyC=0
    covidotXxXyC=covidotYyXyC=covidot2XyXyC=covXxXyC=covYyXyC=covXxYyC=cov2XyXyC=covidotXxYy=0
    covijXxYy=covidotXxYyC=covijXxYyC=cov2XxXyC=covidot2XxXyC=covij2XxXyC=covidot2XxXy=0
    covij2XxXy=cov2YyXyC=covidot2YyXyC=covij2YyXyC=covidot2YyXy=covij2YyXy=0
#####################    
    
####### Declare variables for A and B
    tijab = matrix(c(0),nrow=n,ncol=n) #this is tau-sub-ijab
    t2ijab = matrix(c(0),nrow=n,ncol=n) #tau-sub-ijab SQUARED
    tijaa = matrix(c(0),nrow=n,ncol=n) #this is tau-sub-ijaa, no ties on X
    tijbb = matrix(c(0),nrow=n,ncol=n) #this is tau-sub-ijbb, no ties on Y
    sumtidotab = matrix(c(0),nrow=1,ncol=n)
    sumt2idotab = matrix(c(0),nrow=1,ncol=n)
    sumtidotaa = matrix(c(0),nrow=1,ncol=n)
    sumtidotbb = matrix(c(0),nrow=1,ncol=n)
    tidotab = matrix(c(0),nrow=1,ncol=n)
    t2idotab = matrix(c(0),nrow=1,ncol=n)
    tidotaa = matrix(c(0),nrow=1,ncol=n)
    tidotbb = matrix(c(0),nrow=1,ncol=n)

    sumtijab=sumt2ijab=sumtijaa=sumtijbb=taa=tbb=tab=t2ab=0
    vartidotab=vart2idotab=vartijab=vart2ijab=vartijaa=vartijbb=0
    covAaAb=vartidotaa=varTaa=covBbAb=vartidotbb=varTbb=0
    stiab=sti2ab=stijab=st2ijab=stiaa=stijaa=stibb=stijbb=0

    varTabC=varT2abC=varTaaC=varTbbC=0
    varbabC=varGamab=0
    
    sebabC=seGamab=0
    part1cab=part2cab=0
    derivTabGam=derivT2abGam=0
    taba=tabb=gammaab=0

    covijAaAb=covijBbAb=covij2AbAb=covidotAaAb=covidotBbAb=covidot2AbAb=covijAaAbC=covijBbAbC=covij2AbAbC=0
    covidotAaAbC=covidotBbAbC=covidot2AbAbC=covAaAbC=covBbAbC=covAaBbC=cov2AbAbC=covidotAaBb=0
    covijAaBb=covidotAaBbC=covijAaBbC=cov2AaAbC=covidot2AaAbC=covij2AaAbC=covidot2AaAb=0
    covij2AaAb=cov2BbAbC=covidot2BbAbC=covij2BbAbC=covidot2BbAb=covij2BbAb=0
#####################  


#declare variables for covariances of X/Y and A/B
covijXyAb = covijXyAa = covijXyBb = covijXxAb = covijXxAa = covijXxBb = covijYyAb = covijYyAa = covijYyBb = 0
covijXyAbC = covijXyAaC = covijXyBbC = covijXxAbC = covijXxAaC = covijXxBbC = covijYyAbC = covijYyAaC = covijYyBbC = 0
covidotXyAb = covidotXyAa = covidotXyBb = covidotXxAb = covidotXxAa = covidotXxBb = covidotYyAb = covidotYyAa = covidotYyBb = 0
covidotXyAbC = covidotXyAaC = covidotXyBbC = covidotXxAbC = covidotXxAaC = covidotXxBbC = covidotYyAbC = covidotYyAaC = covidotYyBbC = 0
covXyAbC = covXyAaC = covXyBbC = covXxAbC = covXxAaC = covXxBbC = covYyAbC = covYyAaC = covYyBbC = 0




### Loop through all possible pairings for X & Y and count up concordances, discordances, ties
    for (i in 1:n) {
        for (j in 1:n) {

			#each ij pairing is only going to satisfy one of the following 5 IF statements... (I think)
            if ( ((X[i] > X[j]) && (Y[i] > Y[j])) || (X[i] < X[j]) && (Y[i] < Y[j])) {
                tijxy[i,j] = 1  #aka tij 
                t2ijxy[i,j] = 1 #square of tij
                tijxx[i,j] = 1
                tijyy[i,j] = 1             
            } #end if concordant
            
            if ( ((X[i] > X[j]) && (Y[i] < Y[j])) || (X[i] < X[j]) && (Y[i] > Y[j])) {
                tijxy[i,j] = -1
                t2ijxy[i,j] = 1
                tijxx[i,j] = 1
                tijyy[i,j] = 1
            } #end if discordant
            
            if ((X[i] == X[j]) && (Y[i] != Y[j])) {
                tijxy[i,j] = 0
                t2ijxy[i,j] = 0
                tijxx[i,j] = 0
                tijyy[i,j] = 1
            } #end if ties on X only
            
            if ((X[i] != X[j]) && (Y[i] == Y[j])) {
                tijxy[i,j] = 0
                t2ijxy[i,j] = 0
                tijxx[i,j] = 1
                tijyy[i,j] = 0
            } #end if ties on Y only
            
            if ((X[i] == X[j]) && (Y[i] == Y[j])) {
                tijxy[i,j] = 0
                t2ijxy[i,j] = 0
                tijxx[i,j] = 0
                tijyy[i,j] = 0
            } #end if ties on both X and Y

        } #end j
    } #end i
    



### Loop through all possible pairings for A & B and count up concordances, discordances, ties       
    for (i in 1:n) {
        for (j in 1:n) {

			#each ij pairing is only going to satisfy one of the following 5 IF statements... (I think)
            if ( ((A[i] > A[j]) && (B[i] > B[j])) || (A[i] < A[j]) && (B[i] < B[j])) {
                tijab[i,j] = 1  #aka tij 
                t2ijab[i,j] = 1 #square of tij
                tijaa[i,j] = 1
                tijbb[i,j] = 1
            } #end if concordant
            
            if ( ((A[i] > A[j]) && (B[i] < B[j])) || (A[i] < A[j]) && (B[i] > B[j])) {
                tijab[i,j] = -1
                t2ijab[i,j] = 1
                tijaa[i,j] = 1
                tijbb[i,j] = 1
            } #end if discordant
            
            if ((A[i] == A[j]) && (B[i] != B[j])) {
                tijab[i,j] = 0
                t2ijab[i,j] = 0
                tijaa[i,j] = 0
                tijbb[i,j] = 1
            } #end if ties on A only
            
            if ((A[i] != A[j]) && (B[i] == B[j])) {
                tijab[i,j] = 0
                t2ijab[i,j] = 0
                tijaa[i,j] = 1
                tijbb[i,j] = 0
            } #end if ties on B only
            
            if ((A[i] == A[j]) && (B[i] == B[j])) {
                tijab[i,j] = 0
                t2ijab[i,j] = 0
                tijaa[i,j] = 0
                tijbb[i,j] = 0
            } #end if ties on both A and B

        } #end j
    } #end i    
    
    
    




    
    

    for (i in 1:n) {
        for (j in 1:n) {
            sumtijxy = sumtijxy + tijxy[i,j]
            sumt2ijxy = sumt2ijxy + t2ijxy[i,j]
            sumtijxx = sumtijxx + tijxx[i,j]
            sumtijyy = sumtijyy + tijyy[i,j]
            sumtidotxy[i] = sumtidotxy[i] + tijxy[i,j]
            sumt2idotxy[i] = sumt2idotxy[i] + t2ijxy[i,j]
            sumtidotxx[i] = sumtidotxx[i] + tijxx[i,j]
            sumtidotyy[i] = sumtidotyy[i] + tijyy[i,j]
            
            sumtijab = sumtijab + tijab[i,j]
            sumt2ijab = sumt2ijab + t2ijab[i,j]
            sumtijaa = sumtijaa + tijaa[i,j]
            sumtijbb = sumtijbb + tijbb[i,j]
            sumtidotab[i] = sumtidotab[i] + tijab[i,j]
            sumt2idotab[i] = sumt2idotab[i] + t2ijab[i,j]
            sumtidotaa[i] = sumtidotaa[i] + tijaa[i,j]
            sumtidotbb[i] = sumtidotbb[i] + tijbb[i,j]                       
        }
    }
    
    tidotxy = sumtidotxy/(n-1) #tidotxy for tau-xy = tau-a
    t2idotxy = sumt2idotxy/(n-1) #for tijxy squared
    tidotxx = sumtidotxx/(n-1) #tau sub i.xx for Somers' dyx
    tidotyy = sumtidotyy/(n-1) #for Somers' dxy
    txy = sumtijxy/(n*(n-1)) #this is tau-a
    t2xy = sumt2ijxy/(n*(n-1)) #(square tijxy then sum over pairs)
    txx = sumtijxx/(n*(n-1))
    tyy = sumtijyy/(n*(n-1))

    tidotab = sumtidotab/(n-1) #tidotab for tau-ab = tau-a
    t2idotab = sumt2idotab/(n-1) #for tijab squared
    tidotaa = sumtidotaa/(n-1) #tau sub i.aa for Somers' dba
    tidotbb = sumtidotbb/(n-1) #for Somers' dab
    tab = sumtijab/(n*(n-1)) #this is tau-a
    t2ab = sumt2ijab/(n*(n-1)) #(square tijab then sum over pairs)
    taa = sumtijaa/(n*(n-1))
    tbb = sumtijbb/(n*(n-1))



#HERE1 covij
    #(co)variances of tau-ijxy, -ijxx, -ijyy
    for (i in 1:n) {
        for (j in 1:n) {
            if (i!=j) { #important for variances...covariances too
                stijxy = stijxy + ((tijxy[i,j] - txy)*(tijxy[i,j] - txy))
                st2ijxy = st2ijxy + ((t2ijxy[i,j] - t2xy) *(t2ijxy[i,j] - t2xy))
                stijxx = stijxx + ((tijxx[i,j] - txx)*(tijxx[i,j] - txx)) #for Somers' dyx
                stijyy = stijyy + ((tijyy[i,j] - tyy)*(tijyy[i,j] - tyy)) #for Somers' dxy
                covijXxXy = covijXxXy + ((tijxx[i,j] - txx)*(tijxy[i,j] - txy))
                covijYyXy = covijYyXy + ((tijyy[i,j] - tyy)*(tijxy[i,j] - txy))
                covijXxYy = covijXxYy + ((tijyy[i,j] - tyy)*(tijxx[i,j] - txx)) #for tau-b
                
                stijab = stijab + ((tijab[i,j] - tab)*(tijab[i,j] - tab))
                st2ijab = st2ijab + ((t2ijab[i,j] - t2ab) *(t2ijab[i,j] - t2ab))
                stijaa = stijaa + ((tijaa[i,j] - taa)*(tijaa[i,j] - taa)) #for Somers' dyx
                stijbb = stijbb + ((tijbb[i,j] - tbb)*(tijbb[i,j] - tbb)) #for Somers' dab
                covijAaAb = covijAaAb + ((tijaa[i,j] - taa)*(tijab[i,j] - tab))
                covijBbAb = covijBbAb + ((tijbb[i,j] - tbb)*(tijab[i,j] - tab))
                covijAaBb = covijAaBb + ((tijbb[i,j] - tbb)*(tijaa[i,j] - taa)) #for tau-b
                
                
                
                #components needed for covariances between X/Y and A/B
				covijXyAb = covijXyAb + ((tijxy[i,j] - txy)*(tijab[i,j] - tab))
				covijXyAa = covijXyAa + ((tijxy[i,j] - txy)*(tijaa[i,j] - taa))
				covijXyBb = covijXyBb + ((tijxy[i,j] - txy)*(tijbb[i,j] - tbb))
				covijXxAb = covijXxAb + ((tijxx[i,j] - txx)*(tijab[i,j] - tab))
				covijXxAa = covijXxAa + ((tijxx[i,j] - txx)*(tijaa[i,j] - taa))
				covijXxBb = covijXxBb + ((tijxx[i,j] - txx)*(tijbb[i,j] - tbb))
				covijYyAb = covijYyAb + ((tijyy[i,j] - tyy)*(tijab[i,j] - tab))
				covijYyAa = covijYyAa + ((tijyy[i,j] - tyy)*(tijaa[i,j] - taa))
				covijYyBb = covijYyBb + ((tijyy[i,j] - tyy)*(tijbb[i,j] - tbb))


            }
        }
    }
    vartijxy = stijxy/((n*(n-1))-1)
    vart2ijxy = st2ijxy/((n*(n-1))-1)
    vartijxx = stijxx/((n*(n-1))-1)
    vartijyy = stijyy/((n*(n-1))-1)
    covijXxXyC = covijXxXy/((n*(n-1))-1)
    covijYyXyC = covijYyXy/((n*(n-1))-1)
    covijXxYyC = covijXxYy/((n*(n-1))-1)
    
    vartijab = stijab/((n*(n-1))-1)
    vart2ijab = st2ijab/((n*(n-1))-1)
    vartijaa = stijaa/((n*(n-1))-1)
    vartijbb = stijbb/((n*(n-1))-1)
    covijAaAbC = covijAaAb/((n*(n-1))-1)
    covijBbAbC = covijBbAb/((n*(n-1))-1)
    covijAaBbC = covijAaBb/((n*(n-1))-1)

	#components needed for covariances between X/Y and A/B
	covijXyAbC = covijXyAb/((n*(n-1))-1)
	covijXyAaC = covijXyAa/((n*(n-1))-1)
	covijXyBbC = covijXyBb/((n*(n-1))-1)
	covijXxAbC = covijXxAb/((n*(n-1))-1)
	covijXxAaC = covijXxAa/((n*(n-1))-1)
	covijXxBbC = covijXxBb/((n*(n-1))-1)
	covijYyAbC = covijYyAb/((n*(n-1))-1)
	covijYyAaC = covijYyAa/((n*(n-1))-1)
	covijYyBbC = covijYyBb/((n*(n-1))-1)
    


#HERE2  covidot
    #(co)variances of tau-i.xy, -i.xx, -i.yy
    for (i in 1:n){

        stixy = stixy + ((tidotxy[i] - txy) *(tidotxy[i] - txy))
        sti2xy = sti2xy + ((t2idotxy[i] - t2xy) *(t2idotxy[i] - t2xy))
        stixx = stixx + ((tidotxx[i] - txx)*(tidotxx[i] - txx))
        #for Somers' dyx
        stiyy = stiyy + ((tidotyy[i] - tyy)*(tidotyy[i] - tyy))
        #for Somers' dxy
        covidotXxXy = covidotXxXy + ((tidotxx[i] - txx)*(tidotxy[i] - txy))
        covidotYyXy = covidotYyXy + ((tidotyy[i] - tyy)*(tidotxy[i] - txy))
        covidotXxYy = covidotXxYy + ((tidotyy[i] - tyy)*(tidotxx[i] - txx)) #for tau-b
        
        stiab = stiab + ((tidotab[i] - tab) *(tidotab[i] - tab))
        sti2ab = sti2ab + ((t2idotab[i] - t2ab) *(t2idotab[i] - t2ab))
        stiaa = stiaa + ((tidotaa[i] - taa)*(tidotaa[i] - taa))
        #for Somers' dba
        stibb = stibb + ((tidotbb[i] - tbb)*(tidotbb[i] - tbb))
        #for Somers' dab
        covidotAaAb = covidotAaAb + ((tidotaa[i] - taa)*(tidotab[i] - tab))
        covidotBbAb = covidotBbAb + ((tidotbb[i] - tbb)*(tidotab[i] - tab))
        covidotAaBb = covidotAaBb + ((tidotbb[i] - tbb)*(tidotaa[i] - taa)) #for tau-b
        
        #components needed for covariances between X/Y and A/B
		covidotXyAb = covidotXyAb + ((tidotxy[i] - txy)*(tidotab[i] - tab))
		covidotXyAa = covidotXyAa + ((tidotxy[i] - txy)*(tidotaa[i] - taa))
		covidotXyBb = covidotXyBb + ((tidotxy[i] - txy)*(tidotbb[i] - tbb))
		covidotXxAb = covidotXxAb + ((tidotxx[i] - txx)*(tidotab[i] - tab))
		covidotXxAa = covidotXxAa + ((tidotxx[i] - txx)*(tidotaa[i] - taa))
		covidotXxBb = covidotXxBb + ((tidotxx[i] - txx)*(tidotbb[i] - tbb))
		covidotYyAb = covidotYyAb + ((tidotyy[i] - tyy)*(tidotab[i] - tab))
		covidotYyAa = covidotYyAa + ((tidotyy[i] - tyy)*(tidotaa[i] - taa))
		covidotYyBb = covidotYyBb + ((tidotyy[i] - tyy)*(tidotbb[i] - tbb))

    }
    vartidotxy = stixy/(n-1)
    vart2idotxy = sti2xy/(n-1) #for tijxy squared
    vartidotxx = stixx/(n-1)
    vartidotyy = stiyy/(n-1)    
    covidotXxXyC = covidotXxXy/(n-1)
    covidotYyXyC = covidotYyXy/(n-1)
    covidotXxYyC = covidotXxYy/(n-1)
    
    vartidotab = stiab/(n-1)
    vart2idotab = sti2ab/(n-1) #for tijab squared
    vartidotaa = stiaa/(n-1)
    vartidotbb = stibb/(n-1)
    covidotAaAbC = covidotAaAb/(n-1)
    covidotBbAbC = covidotBbAb/(n-1)
    covidotAaBbC = covidotAaBb/(n-1)
    
	#components needed for covariances between X/Y and A/B
	covidotXyAbC = covidotXyAb/(n-1)
	covidotXyAaC = covidotXyAa/(n-1)
	covidotXyBbC = covidotXyBb/(n-1)
	covidotXxAbC = covidotXxAb/(n-1)
	covidotXxAaC = covidotXxAa/(n-1)
	covidotXxBbC = covidotXxBb/(n-1)
	covidotYyAbC = covidotYyAb/(n-1)
	covidotYyAaC = covidotYyAa/(n-1)
	covidotYyBbC = covidotYyBb/(n-1)




    
    

    #CONSISTENT variances
    #for tau-a = tau-xy
    varTxyC = (((4*(n-2))*vartidotxy) + (2*vartijxy))/(n*(n-1))
    seTxyC = sqrt(varTxyC) #no division by n
    #for tau-xx
    varTxxC = (((4*(n-2))*vartidotxx) + (2*vartijxx))/(n*(n-1))
    #for tau-yy
    varTyyC = (((4*(n-2))*vartidotyy) + (2*vartijyy))/(n*(n-1))
    #for tau-2 which is tau-xy squared
    varT2xyC = (((4*(n-2))*vart2idotxy) + (2*vart2ijxy))/(n*(n-1))
    #for tau-a = tau-ab
    varTabC = (((4*(n-2))*vartidotab) + (2*vartijab))/(n*(n-1))
    seTabC = sqrt(varTabC) #no division by n
    #for tau-aa
    varTaaC = (((4*(n-2))*vartidotaa) + (2*vartijaa))/(n*(n-1))
    #for tau-bb
    varTbbC = (((4*(n-2))*vartidotbb) + (2*vartijbb))/(n*(n-1))
    #for tau-2 which is tau-ab squared
    varT2abC = (((4*(n-2))*vart2idotab) + (2*vart2ijab))/(n*(n-1))    



    #CONSISTENT covariances
    #between tau-xx and tau-xy
    covXxXyC = ((4*(n-2)*covidotXxXyC) + (2*covijXxXyC))/(n*(n-1))
    #between tau-yy and tau-xy
    covYyXyC = ((4*(n-2)*covidotYyXyC) + (2*covijYyXyC))/(n*(n-1))
    #between tau-xx and tau-yy
    covXxYyC = ((4*(n-2)*covidotXxYyC) + (2*covijXxYyC))/(n*(n-1))
    #between tau-aa and tau-ab
    covAaAbC = ((4*(n-2)*covidotAaAbC) + (2*covijAaAbC))/(n*(n-1))
    #between tau-bb and tau-ab
    covBbAbC = ((4*(n-2)*covidotBbAbC) + (2*covijBbAbC))/(n*(n-1))
    #between tau-aa and tau-bb
    covAaBbC = ((4*(n-2)*covidotAaBbC) + (2*covijAaBbC))/(n*(n-1))



	#9 new covariances
covXyAbC = ((4*(n-2)*covidotXyAbC) + (2*covijXyAbC))/(n*(n-1))
covXyAaC = ((4*(n-2)*covidotXyAaC) + (2*covijXyAaC))/(n*(n-1))
covXyBbC = ((4*(n-2)*covidotXyBbC) + (2*covijXyBbC))/(n*(n-1))
covXxAbC = ((4*(n-2)*covidotXxAbC) + (2*covijXxAbC))/(n*(n-1))
covXxAaC = ((4*(n-2)*covidotXxAaC) + (2*covijXxAaC))/(n*(n-1))
covXxBbC = ((4*(n-2)*covidotXxBbC) + (2*covijXxBbC))/(n*(n-1))
covYyAbC = ((4*(n-2)*covidotYyAbC) + (2*covijYyAbC))/(n*(n-1))
covYyAaC = ((4*(n-2)*covidotYyAaC) + (2*covijYyAaC))/(n*(n-1))
covYyBbC = ((4*(n-2)*covidotYyBbC) + (2*covijYyBbC))/(n*(n-1))





    ## CC variances ##



    #gamma X Y
    derivTxyGam = 1/t2xy
    derivT2xyGam = -txy/(t2xy*t2xy)
    varGamxy = (derivTxyGam*derivTxyGam*varTxyC) + (derivT2xyGam*derivT2xyGam*varT2xyC) + (2*derivTxyGam*derivT2xyGam*cov2XyXyC)
    seGamxy = sqrt(varGamxy)

    #tau-b X Y
    #(from Cliff 1996 p.79 but includes denom. from Cliff & Charlin p. 700)
    part1cxy = varTxyC - (txy*((covXxXyC/txx)+(covYyXyC/tyy)))
    part2cxy = (txy*txy)*((varTxxC/(4*txx*txx))+(varTyyC/(4*tyy*tyy))+(covXxYyC/(2*txx*tyy)))
    varbxyC = (part1cxy + part2cxy)/(txx*tyy)
    sebxyC = sqrt(varbxyC)
    
    #point estimates of gamma family indices X Y
    taxy = txy
    tbxy = txy/(sqrt(txx*tyy))
    gammaxy = txy/t2xy


    #gamma A B
    derivTabGam = 1/t2ab
    derivT2abGam = -tab/(t2ab*t2ab)
    varGamab = (derivTabGam*derivTabGam*varTabC) + (derivT2abGam*derivT2abGam*varT2abC) + (2*derivTabGam*derivT2abGam*cov2AbAbC)
    seGamab = sqrt(varGamab)

    #tau-b A B
    #(from Cliff 1996 p.79 but includes denom. from Cliff & Charlin p. 700)
    part1cab = varTabC - (tab*((covAaAbC/taa)+(covBbAbC/tbb)))
    part2cab = (tab*tab)*((varTaaC/(4*taa*taa))+(varTbbC/(4*tbb*tbb))+(covAaBbC/(2*taa*tbb)))
    varbabC = (part1cab + part2cab)/(taa*tbb)
    sebabC = sqrt(varbabC)

    #point estimates of gamma family indices A B
    taab = tab
    tbab = tab/(sqrt(taa*tbb))
    gammaab = tab/t2ab




#NOWWWW!!!!  Get the covariance between the two tau-b coefficients!!!!
#from Cliff & Charlin 1991, formula 20
mat1.1=(txx*tyy)^(-.5)
mat1.2=(-.5)*(txy)*(txx^(-(3/2)))*(tyy^(-.5))
mat1.3=(-.5)*(txy)*(txx^(-.5))*(tyy^(-(3/2)))
mat1 <- matrix(c(mat1.1,mat1.2,mat1.3),1,3)

mat2 <- matrix(c(covXyAbC, covXyAaC, covXyBbC, covXxAbC, covXxAaC, covXxBbC, covYyAbC, covYyAaC, covYyBbC),3,3)

mat3.1=(taa*tbb)^(-.5)
mat3.2=(-.5)*(tab)*(taa^(-(3/2)))*(tbb^(-.5))
mat3.3=(-.5)*(tab)*(taa^(-.5))*(tbb^(-(3/2)))
mat3 <- matrix(c(mat3.1,mat3.2,mat3.3),3,1)

covarTaubXYAB <- mat1 %*% mat2 %*% mat3

seTaubXYABind <- sqrt((sebxyC^2) + (sebabC^2))
seTaubXYABdep <- sqrt(varbxyC + varbabC - (2*covarTaubXYAB))
zInd <- (tbxy-tbab)/seTaubXYABind
zDep <- (tbxy-tbab)/seTaubXYABdep
#Cliff 1996b, p 341, says to use z-test to compare taus.  (other main option would be t-test, but I'm not sure what appropriate df would be.  maybe: for ind: N1+N2-4.  for dep with two taus drawing on same variable: N-3.  for two dep with two taus drawing on different variables: N-4.
pInd<-2*(1-pnorm(abs(zInd)))
pDep<-2*(1-pnorm(abs(zDep)))

outfile = file(description=paste(outputname,"_CompareTaub.txt",sep=""), open="a")  #on Mac OSX saves to home directory of current user.

    #to output file
    cat(
        " gamma XY: ", gammaxy, " SE: ", seGamxy, "\n",
        "tau-a XY: ", taxy, " SE: ", seTxyC, "\n",
        "tau-b XY: ", tbxy, " SE: ", sebxyC, "\n",        
        "gamma AB: ", gammaab, " SE: ", seGamab, "\n",
        "tau-a AB: ", taab, " SE: ", seTabC, "\n",
        "tau-b AB: ", tbab, " SE: ", sebabC, "\n\n",
        "SE (tau-b(XY) - tau-b(AB)) if independent: ", seTaubXYABind, "\n",
        "SE (tau-b(XY) - tau-b(AB)) if dependent: ", seTaubXYABdep, "\n",
        "indepdenent Z: ",zInd, " p: ",pInd,"\n",
        "dependent Z: ",zDep, " p: ",pDep,"\n",
        file=outfile,append=TRUE)

    close(outfile)

} #end 
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Variance for !a. Cliff and Charlin (1991) proposed an
unbiased variance estimator for !a expected to perform
better in small samples than asymptotic variance estimators.
It generalizes the unbiased variance derived by Daniels and
Kendall (1947) for the presence of ties. The unbiased SE for
!a is the square root of the unbiased variance:3


"u
2#!a$ !


4#N " 1$s!i. xy


2 " 2s!ijxy


2


#N " 2$#N " 3$
, (7)


where s!ijxy


2 is an estimate of the variance of !ijxy:


s!ijxy


2 !


!
i%1


N !
j%1


N


#!ijxy " !xy$
2


N#N " 1$
for i # j, (8)


and !xy % !a. The other quantity,


s!i. xy


2 !


!
i%1


N


#!i. xy " !xy$
2


N
, (9)


is an estimate of the variance of !i.xy, which is approxi-
mately the mean (over Y) of !ijxy:


!i. xy !


!
j%1


N


!ijxy


N " 1
. (10)


In an empirical example, Cliff and Charlin (1991) used the
t distribution to form CIs based on the unbiased SE, with
df % N & 2.


Cliff and colleagues (Cliff, 1996; Cliff & Charlin, 1991;
Long & Cliff, 1997) also presented a consistent variance
estimator for !a, applicable when there are ties. Following
Long and Cliff (1997, p. 34), the consistent SE for !a is the
square root of the consistent variance:


"c
2#!a$ !


4#N " 2$'!i. xy $ 2'!ijxy


N#N " 1$
, (11)


where '!i. xy and '!ijxy differ from s!i. xy


2 and s!ijxy


2 only because 1
is subtracted from the denominators.


In simulations with continuous data (N % 10, 50, or 200),
CIs for !a computed with the consistent SE outperformed
those with the unbiased SE (Long & Cliff, 1997). Cliff
(1996, p. 63) recommended the consistent variance with CIs
computed based on the normal distribution. Apparently,
neither the unbiased nor the consistent variance has been
evaluated for CIs in simulations with ordinal data.


Variance for Somers’s ds. Cliff and Charlin (1991)
derived asymptotic variance estimators for Somers’s dyx and
!b using the delta method, by formulating them as functions
of !a. Computational details were elaborated upon by Cliff


(1996). Following Cliff (1996, p. 78),4 the asymptotic vari-
ance for Somers’s dyx is


"2#dyx$ !
(var#!xy$)


!xx
2 "


2!xy(cov#!xx,!xy$)


!xx
3 $


!xy
2 (var#!xx$)


!xx
4 ,


(12)


with !xx equal to the probability that a pair is not tied on X:


!xx !


!
i%1


N !
j%1


N


!ijxx


N#N " 1$
, (13)


where !ijxx is 0 for pairs tied on X and 1 otherwise.
Cliff (1996, p. 79) specified that unbiased variances and


covariances are used to compute Equation 12, noting that
the result is not necessarily unbiased. However, in his
description of covariances (Cliff, 1996, p. 73), Cliff ex-
plained that the consistent, rather than unbiased, formulas
are preferable. Thus, there is ambiguity in the computation
of Equation 12. Two asymptotic versions of "2(dyx) are
conceivable: one computed with the unbiased (co)variances
and "u


2#dyx$ and one computed with the consistent (co)vari-
ances, "c


2#dyx$. Computation of "u
2#dyx$ and "c


2#dyx$ is de-
scribed in Appendix A (and formulas are easily modified for
dxy). The unbiased and consistent variances for dyx (or dxy)
apparently have not been compared.


Variance for !b. The asymptotic variance5 for !b (Cliff,
1996; Cliff & Charlin, 1991) is


"2#!b$ !


var#!xy$ " !xy"cov#!xy, !xx$


!xx
$


cov#!xy, !yy$


!yy
#


!xx!yy


$


!xy
2 "var#!xx$


4!xx
2 $


var#!yy$


4!yy
2 $


cov#!xx, !yy$


2!xx!yy
#


!xx!yy
, (14)


3 Because "u
2#!a$ can be negative or 0, Cliff (1996, p. 61)


provided a lower bound for the unbiased variance of !a:


min("u
2#!a$) !


2s!ijxy


2


N#N " 1$
.


4 For "2(dyx), Cliff and Charlin (1991) gave a formula (p. 700)
identical to that given by Cliff (1996, p. 78), except for the power
of !xx in the denominator of the final term. I presume here that the
4th power (as in Cliff & Charlin, 1991) is correct, rather than the
3rd power (as in Cliff, 1996).


5 The equation presented for "2(!b) is a hybrid of the formula
given by Cliff and Charlin (1991, p. 700) and the one given by
Cliff (1996, p. 79). The formula of Cliff and Charlin includes an
undefined symbol—s22


2 —that is presumed to be a typo because
Cliff’s equation has !22


2 in its place (which corresponds to !yy
2 in the


present notation). The formula of Cliff reorganizes the numerator
from Cliff and Charlin but lacks the denominator.
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Variance for !a. Cliff and Charlin (1991) proposed an
unbiased variance estimator for !a expected to perform
better in small samples than asymptotic variance estimators.
It generalizes the unbiased variance derived by Daniels and
Kendall (1947) for the presence of ties. The unbiased SE for
!a is the square root of the unbiased variance:3


"u
2#!a$ !


4#N " 1$s!i. xy


2 " 2s!ijxy
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#N " 2$#N " 3$
, (7)


where s!ijxy


2 is an estimate of the variance of !ijxy:


s!ijxy
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for i # j, (8)


and !xy % !a. The other quantity,


s!i. xy
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N
, (9)


is an estimate of the variance of !i.xy, which is approxi-
mately the mean (over Y) of !ijxy:


!i. xy !


!
j%1


N


!ijxy


N " 1
. (10)


In an empirical example, Cliff and Charlin (1991) used the
t distribution to form CIs based on the unbiased SE, with
df % N & 2.


Cliff and colleagues (Cliff, 1996; Cliff & Charlin, 1991;
Long & Cliff, 1997) also presented a consistent variance
estimator for !a, applicable when there are ties. Following
Long and Cliff (1997, p. 34), the consistent SE for !a is the
square root of the consistent variance:


"c
2#!a$ !
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N#N " 1$
, (11)


where '!i. xy and '!ijxy differ from s!i. xy


2 and s!ijxy


2 only because 1
is subtracted from the denominators.


In simulations with continuous data (N % 10, 50, or 200),
CIs for !a computed with the consistent SE outperformed
those with the unbiased SE (Long & Cliff, 1997). Cliff
(1996, p. 63) recommended the consistent variance with CIs
computed based on the normal distribution. Apparently,
neither the unbiased nor the consistent variance has been
evaluated for CIs in simulations with ordinal data.


Variance for Somers’s ds. Cliff and Charlin (1991)
derived asymptotic variance estimators for Somers’s dyx and
!b using the delta method, by formulating them as functions
of !a. Computational details were elaborated upon by Cliff


(1996). Following Cliff (1996, p. 78),4 the asymptotic vari-
ance for Somers’s dyx is


"2#dyx$ !
(var#!xy$)


!xx
2 "


2!xy(cov#!xx,!xy$)


!xx
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!xy
2 (var#!xx$)


!xx
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(12)


with !xx equal to the probability that a pair is not tied on X:
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!ijxx


N#N " 1$
, (13)


where !ijxx is 0 for pairs tied on X and 1 otherwise.
Cliff (1996, p. 79) specified that unbiased variances and


covariances are used to compute Equation 12, noting that
the result is not necessarily unbiased. However, in his
description of covariances (Cliff, 1996, p. 73), Cliff ex-
plained that the consistent, rather than unbiased, formulas
are preferable. Thus, there is ambiguity in the computation
of Equation 12. Two asymptotic versions of "2(dyx) are
conceivable: one computed with the unbiased (co)variances
and "u


2#dyx$ and one computed with the consistent (co)vari-
ances, "c


2#dyx$. Computation of "u
2#dyx$ and "c


2#dyx$ is de-
scribed in Appendix A (and formulas are easily modified for
dxy). The unbiased and consistent variances for dyx (or dxy)
apparently have not been compared.


Variance for !b. The asymptotic variance5 for !b (Cliff,
1996; Cliff & Charlin, 1991) is
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3 Because "u
2#!a$ can be negative or 0, Cliff (1996, p. 61)


provided a lower bound for the unbiased variance of !a:


min("u
2#!a$) !


2s!ijxy


2


N#N " 1$
.


4 For "2(dyx), Cliff and Charlin (1991) gave a formula (p. 700)
identical to that given by Cliff (1996, p. 78), except for the power
of !xx in the denominator of the final term. I presume here that the
4th power (as in Cliff & Charlin, 1991) is correct, rather than the
3rd power (as in Cliff, 1996).


5 The equation presented for "2(!b) is a hybrid of the formula
given by Cliff and Charlin (1991, p. 700) and the one given by
Cliff (1996, p. 79). The formula of Cliff and Charlin includes an
undefined symbol—s22


2 —that is presumed to be a typo because
Cliff’s equation has !22


2 in its place (which corresponds to !yy
2 in the


present notation). The formula of Cliff reorganizes the numerator
from Cliff and Charlin but lacks the denominator.
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Variance for !a. Cliff and Charlin (1991) proposed an
unbiased variance estimator for !a expected to perform
better in small samples than asymptotic variance estimators.
It generalizes the unbiased variance derived by Daniels and
Kendall (1947) for the presence of ties. The unbiased SE for
!a is the square root of the unbiased variance:3


"u
2#!a$ !


4#N " 1$s!i. xy


2 " 2s!ijxy


2


#N " 2$#N " 3$
, (7)


where s!ijxy


2 is an estimate of the variance of !ijxy:


s!ijxy


2 !


!
i%1


N !
j%1


N


#!ijxy " !xy$
2


N#N " 1$
for i # j, (8)


and !xy % !a. The other quantity,


s!i. xy


2 !


!
i%1


N


#!i. xy " !xy$
2


N
, (9)


is an estimate of the variance of !i.xy, which is approxi-
mately the mean (over Y) of !ijxy:


!i. xy !


!
j%1


N


!ijxy


N " 1
. (10)


In an empirical example, Cliff and Charlin (1991) used the
t distribution to form CIs based on the unbiased SE, with
df % N & 2.


Cliff and colleagues (Cliff, 1996; Cliff & Charlin, 1991;
Long & Cliff, 1997) also presented a consistent variance
estimator for !a, applicable when there are ties. Following
Long and Cliff (1997, p. 34), the consistent SE for !a is the
square root of the consistent variance:


"c
2#!a$ !


4#N " 2$'!i. xy $ 2'!ijxy


N#N " 1$
, (11)


where '!i. xy and '!ijxy differ from s!i. xy


2 and s!ijxy


2 only because 1
is subtracted from the denominators.


In simulations with continuous data (N % 10, 50, or 200),
CIs for !a computed with the consistent SE outperformed
those with the unbiased SE (Long & Cliff, 1997). Cliff
(1996, p. 63) recommended the consistent variance with CIs
computed based on the normal distribution. Apparently,
neither the unbiased nor the consistent variance has been
evaluated for CIs in simulations with ordinal data.


Variance for Somers’s ds. Cliff and Charlin (1991)
derived asymptotic variance estimators for Somers’s dyx and
!b using the delta method, by formulating them as functions
of !a. Computational details were elaborated upon by Cliff


(1996). Following Cliff (1996, p. 78),4 the asymptotic vari-
ance for Somers’s dyx is


"2#dyx$ !
(var#!xy$)


!xx
2 "


2!xy(cov#!xx,!xy$)


!xx
3 $


!xy
2 (var#!xx$)


!xx
4 ,


(12)


with !xx equal to the probability that a pair is not tied on X:


!xx !


!
i%1


N !
j%1


N


!ijxx


N#N " 1$
, (13)


where !ijxx is 0 for pairs tied on X and 1 otherwise.
Cliff (1996, p. 79) specified that unbiased variances and


covariances are used to compute Equation 12, noting that
the result is not necessarily unbiased. However, in his
description of covariances (Cliff, 1996, p. 73), Cliff ex-
plained that the consistent, rather than unbiased, formulas
are preferable. Thus, there is ambiguity in the computation
of Equation 12. Two asymptotic versions of "2(dyx) are
conceivable: one computed with the unbiased (co)variances
and "u


2#dyx$ and one computed with the consistent (co)vari-
ances, "c


2#dyx$. Computation of "u
2#dyx$ and "c


2#dyx$ is de-
scribed in Appendix A (and formulas are easily modified for
dxy). The unbiased and consistent variances for dyx (or dxy)
apparently have not been compared.


Variance for !b. The asymptotic variance5 for !b (Cliff,
1996; Cliff & Charlin, 1991) is


"2#!b$ !


var#!xy$ " !xy"cov#!xy, !xx$


!xx
$


cov#!xy, !yy$


!yy
#


!xx!yy


$


!xy
2 "var#!xx$


4!xx
2 $


var#!yy$


4!yy
2 $


cov#!xx, !yy$


2!xx!yy
#


!xx!yy
, (14)


3 Because "u
2#!a$ can be negative or 0, Cliff (1996, p. 61)


provided a lower bound for the unbiased variance of !a:


min("u
2#!a$) !


2s!ijxy


2


N#N " 1$
.


4 For "2(dyx), Cliff and Charlin (1991) gave a formula (p. 700)
identical to that given by Cliff (1996, p. 78), except for the power
of !xx in the denominator of the final term. I presume here that the
4th power (as in Cliff & Charlin, 1991) is correct, rather than the
3rd power (as in Cliff, 1996).


5 The equation presented for "2(!b) is a hybrid of the formula
given by Cliff and Charlin (1991, p. 700) and the one given by
Cliff (1996, p. 79). The formula of Cliff and Charlin includes an
undefined symbol—s22


2 —that is presumed to be a typo because
Cliff’s equation has !22


2 in its place (which corresponds to !yy
2 in the


present notation). The formula of Cliff reorganizes the numerator
from Cliff and Charlin but lacks the denominator.
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Variance for !a. Cliff and Charlin (1991) proposed an
unbiased variance estimator for !a expected to perform
better in small samples than asymptotic variance estimators.
It generalizes the unbiased variance derived by Daniels and
Kendall (1947) for the presence of ties. The unbiased SE for
!a is the square root of the unbiased variance:3


"u
2#!a$ !


4#N " 1$s!i. xy


2 " 2s!ijxy


2


#N " 2$#N " 3$
, (7)


where s!ijxy


2 is an estimate of the variance of !ijxy:


s!ijxy


2 !


!
i%1


N !
j%1


N


#!ijxy " !xy$
2


N#N " 1$
for i # j, (8)


and !xy % !a. The other quantity,


s!i. xy


2 !


!
i%1


N


#!i. xy " !xy$
2


N
, (9)


is an estimate of the variance of !i.xy, which is approxi-
mately the mean (over Y) of !ijxy:


!i. xy !


!
j%1


N


!ijxy


N " 1
. (10)


In an empirical example, Cliff and Charlin (1991) used the
t distribution to form CIs based on the unbiased SE, with
df % N & 2.


Cliff and colleagues (Cliff, 1996; Cliff & Charlin, 1991;
Long & Cliff, 1997) also presented a consistent variance
estimator for !a, applicable when there are ties. Following
Long and Cliff (1997, p. 34), the consistent SE for !a is the
square root of the consistent variance:


"c
2#!a$ !


4#N " 2$'!i. xy $ 2'!ijxy


N#N " 1$
, (11)


where '!i. xy and '!ijxy differ from s!i. xy


2 and s!ijxy


2 only because 1
is subtracted from the denominators.


In simulations with continuous data (N % 10, 50, or 200),
CIs for !a computed with the consistent SE outperformed
those with the unbiased SE (Long & Cliff, 1997). Cliff
(1996, p. 63) recommended the consistent variance with CIs
computed based on the normal distribution. Apparently,
neither the unbiased nor the consistent variance has been
evaluated for CIs in simulations with ordinal data.


Variance for Somers’s ds. Cliff and Charlin (1991)
derived asymptotic variance estimators for Somers’s dyx and
!b using the delta method, by formulating them as functions
of !a. Computational details were elaborated upon by Cliff


(1996). Following Cliff (1996, p. 78),4 the asymptotic vari-
ance for Somers’s dyx is


"2#dyx$ !
(var#!xy$)


!xx
2 "


2!xy(cov#!xx,!xy$)


!xx
3 $


!xy
2 (var#!xx$)


!xx
4 ,


(12)


with !xx equal to the probability that a pair is not tied on X:


!xx !


!
i%1


N !
j%1


N


!ijxx


N#N " 1$
, (13)


where !ijxx is 0 for pairs tied on X and 1 otherwise.
Cliff (1996, p. 79) specified that unbiased variances and


covariances are used to compute Equation 12, noting that
the result is not necessarily unbiased. However, in his
description of covariances (Cliff, 1996, p. 73), Cliff ex-
plained that the consistent, rather than unbiased, formulas
are preferable. Thus, there is ambiguity in the computation
of Equation 12. Two asymptotic versions of "2(dyx) are
conceivable: one computed with the unbiased (co)variances
and "u


2#dyx$ and one computed with the consistent (co)vari-
ances, "c


2#dyx$. Computation of "u
2#dyx$ and "c


2#dyx$ is de-
scribed in Appendix A (and formulas are easily modified for
dxy). The unbiased and consistent variances for dyx (or dxy)
apparently have not been compared.


Variance for !b. The asymptotic variance5 for !b (Cliff,
1996; Cliff & Charlin, 1991) is


"2#!b$ !


var#!xy$ " !xy"cov#!xy, !xx$


!xx
$


cov#!xy, !yy$


!yy
#


!xx!yy


$


!xy
2 "var#!xx$


4!xx
2 $


var#!yy$


4!yy
2 $


cov#!xx, !yy$


2!xx!yy
#


!xx!yy
, (14)


3 Because "u
2#!a$ can be negative or 0, Cliff (1996, p. 61)


provided a lower bound for the unbiased variance of !a:


min("u
2#!a$) !


2s!ijxy


2


N#N " 1$
.


4 For "2(dyx), Cliff and Charlin (1991) gave a formula (p. 700)
identical to that given by Cliff (1996, p. 78), except for the power
of !xx in the denominator of the final term. I presume here that the
4th power (as in Cliff & Charlin, 1991) is correct, rather than the
3rd power (as in Cliff, 1996).


5 The equation presented for "2(!b) is a hybrid of the formula
given by Cliff and Charlin (1991, p. 700) and the one given by
Cliff (1996, p. 79). The formula of Cliff and Charlin includes an
undefined symbol—s22


2 —that is presumed to be a typo because
Cliff’s equation has !22


2 in its place (which corresponds to !yy
2 in the


present notation). The formula of Cliff reorganizes the numerator
from Cliff and Charlin but lacks the denominator.
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Variance for !a. Cliff and Charlin (1991) proposed an
unbiased variance estimator for !a expected to perform
better in small samples than asymptotic variance estimators.
It generalizes the unbiased variance derived by Daniels and
Kendall (1947) for the presence of ties. The unbiased SE for
!a is the square root of the unbiased variance:3


"u
2#!a$ !


4#N " 1$s!i. xy


2 " 2s!ijxy


2


#N " 2$#N " 3$
, (7)


where s!ijxy


2 is an estimate of the variance of !ijxy:


s!ijxy


2 !


!
i%1


N !
j%1


N


#!ijxy " !xy$
2


N#N " 1$
for i # j, (8)


and !xy % !a. The other quantity,


s!i. xy


2 !


!
i%1


N


#!i. xy " !xy$
2


N
, (9)


is an estimate of the variance of !i.xy, which is approxi-
mately the mean (over Y) of !ijxy:


!i. xy !


!
j%1


N


!ijxy


N " 1
. (10)


In an empirical example, Cliff and Charlin (1991) used the
t distribution to form CIs based on the unbiased SE, with
df % N & 2.


Cliff and colleagues (Cliff, 1996; Cliff & Charlin, 1991;
Long & Cliff, 1997) also presented a consistent variance
estimator for !a, applicable when there are ties. Following
Long and Cliff (1997, p. 34), the consistent SE for !a is the
square root of the consistent variance:


"c
2#!a$ !


4#N " 2$'!i. xy $ 2'!ijxy


N#N " 1$
, (11)


where '!i. xy and '!ijxy differ from s!i. xy


2 and s!ijxy


2 only because 1
is subtracted from the denominators.


In simulations with continuous data (N % 10, 50, or 200),
CIs for !a computed with the consistent SE outperformed
those with the unbiased SE (Long & Cliff, 1997). Cliff
(1996, p. 63) recommended the consistent variance with CIs
computed based on the normal distribution. Apparently,
neither the unbiased nor the consistent variance has been
evaluated for CIs in simulations with ordinal data.


Variance for Somers’s ds. Cliff and Charlin (1991)
derived asymptotic variance estimators for Somers’s dyx and
!b using the delta method, by formulating them as functions
of !a. Computational details were elaborated upon by Cliff


(1996). Following Cliff (1996, p. 78),4 the asymptotic vari-
ance for Somers’s dyx is


"2#dyx$ !
(var#!xy$)


!xx
2 "


2!xy(cov#!xx,!xy$)


!xx
3 $


!xy
2 (var#!xx$)


!xx
4 ,


(12)


with !xx equal to the probability that a pair is not tied on X:


!xx !


!
i%1


N !
j%1


N


!ijxx


N#N " 1$
, (13)


where !ijxx is 0 for pairs tied on X and 1 otherwise.
Cliff (1996, p. 79) specified that unbiased variances and


covariances are used to compute Equation 12, noting that
the result is not necessarily unbiased. However, in his
description of covariances (Cliff, 1996, p. 73), Cliff ex-
plained that the consistent, rather than unbiased, formulas
are preferable. Thus, there is ambiguity in the computation
of Equation 12. Two asymptotic versions of "2(dyx) are
conceivable: one computed with the unbiased (co)variances
and "u


2#dyx$ and one computed with the consistent (co)vari-
ances, "c


2#dyx$. Computation of "u
2#dyx$ and "c


2#dyx$ is de-
scribed in Appendix A (and formulas are easily modified for
dxy). The unbiased and consistent variances for dyx (or dxy)
apparently have not been compared.


Variance for !b. The asymptotic variance5 for !b (Cliff,
1996; Cliff & Charlin, 1991) is


"2#!b$ !


var#!xy$ " !xy"cov#!xy, !xx$


!xx
$


cov#!xy, !yy$


!yy
#


!xx!yy


$


!xy
2 "var#!xx$


4!xx
2 $


var#!yy$


4!yy
2 $


cov#!xx, !yy$


2!xx!yy
#


!xx!yy
, (14)


3 Because "u
2#!a$ can be negative or 0, Cliff (1996, p. 61)


provided a lower bound for the unbiased variance of !a:


min("u
2#!a$) !


2s!ijxy


2


N#N " 1$
.


4 For "2(dyx), Cliff and Charlin (1991) gave a formula (p. 700)
identical to that given by Cliff (1996, p. 78), except for the power
of !xx in the denominator of the final term. I presume here that the
4th power (as in Cliff & Charlin, 1991) is correct, rather than the
3rd power (as in Cliff, 1996).


5 The equation presented for "2(!b) is a hybrid of the formula
given by Cliff and Charlin (1991, p. 700) and the one given by
Cliff (1996, p. 79). The formula of Cliff and Charlin includes an
undefined symbol—s22


2 —that is presumed to be a typo because
Cliff’s equation has !22


2 in its place (which corresponds to !yy
2 in the


present notation). The formula of Cliff reorganizes the numerator
from Cliff and Charlin but lacks the denominator.
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Variance for !a. Cliff and Charlin (1991) proposed an
unbiased variance estimator for !a expected to perform
better in small samples than asymptotic variance estimators.
It generalizes the unbiased variance derived by Daniels and
Kendall (1947) for the presence of ties. The unbiased SE for
!a is the square root of the unbiased variance:3


"u
2#!a$ !


4#N " 1$s!i. xy


2 " 2s!ijxy


2


#N " 2$#N " 3$
, (7)


where s!ijxy


2 is an estimate of the variance of !ijxy:


s!ijxy


2 !


!
i%1


N !
j%1


N


#!ijxy " !xy$
2


N#N " 1$
for i # j, (8)


and !xy % !a. The other quantity,


s!i. xy


2 !


!
i%1


N


#!i. xy " !xy$
2


N
, (9)


is an estimate of the variance of !i.xy, which is approxi-
mately the mean (over Y) of !ijxy:


!i. xy !


!
j%1


N


!ijxy


N " 1
. (10)


In an empirical example, Cliff and Charlin (1991) used the
t distribution to form CIs based on the unbiased SE, with
df % N & 2.


Cliff and colleagues (Cliff, 1996; Cliff & Charlin, 1991;
Long & Cliff, 1997) also presented a consistent variance
estimator for !a, applicable when there are ties. Following
Long and Cliff (1997, p. 34), the consistent SE for !a is the
square root of the consistent variance:


"c
2#!a$ !


4#N " 2$'!i. xy $ 2'!ijxy


N#N " 1$
, (11)


where '!i. xy and '!ijxy differ from s!i. xy


2 and s!ijxy


2 only because 1
is subtracted from the denominators.


In simulations with continuous data (N % 10, 50, or 200),
CIs for !a computed with the consistent SE outperformed
those with the unbiased SE (Long & Cliff, 1997). Cliff
(1996, p. 63) recommended the consistent variance with CIs
computed based on the normal distribution. Apparently,
neither the unbiased nor the consistent variance has been
evaluated for CIs in simulations with ordinal data.


Variance for Somers’s ds. Cliff and Charlin (1991)
derived asymptotic variance estimators for Somers’s dyx and
!b using the delta method, by formulating them as functions
of !a. Computational details were elaborated upon by Cliff


(1996). Following Cliff (1996, p. 78),4 the asymptotic vari-
ance for Somers’s dyx is


"2#dyx$ !
(var#!xy$)


!xx
2 "


2!xy(cov#!xx,!xy$)


!xx
3 $


!xy
2 (var#!xx$)


!xx
4 ,


(12)


with !xx equal to the probability that a pair is not tied on X:


!xx !


!
i%1


N !
j%1


N


!ijxx


N#N " 1$
, (13)


where !ijxx is 0 for pairs tied on X and 1 otherwise.
Cliff (1996, p. 79) specified that unbiased variances and


covariances are used to compute Equation 12, noting that
the result is not necessarily unbiased. However, in his
description of covariances (Cliff, 1996, p. 73), Cliff ex-
plained that the consistent, rather than unbiased, formulas
are preferable. Thus, there is ambiguity in the computation
of Equation 12. Two asymptotic versions of "2(dyx) are
conceivable: one computed with the unbiased (co)variances
and "u


2#dyx$ and one computed with the consistent (co)vari-
ances, "c


2#dyx$. Computation of "u
2#dyx$ and "c


2#dyx$ is de-
scribed in Appendix A (and formulas are easily modified for
dxy). The unbiased and consistent variances for dyx (or dxy)
apparently have not been compared.


Variance for !b. The asymptotic variance5 for !b (Cliff,
1996; Cliff & Charlin, 1991) is


"2#!b$ !


var#!xy$ " !xy"cov#!xy, !xx$


!xx
$


cov#!xy, !yy$


!yy
#


!xx!yy


$


!xy
2 "var#!xx$


4!xx
2 $


var#!yy$


4!yy
2 $


cov#!xx, !yy$


2!xx!yy
#


!xx!yy
, (14)


3 Because "u
2#!a$ can be negative or 0, Cliff (1996, p. 61)


provided a lower bound for the unbiased variance of !a:


min("u
2#!a$) !


2s!ijxy


2


N#N " 1$
.


4 For "2(dyx), Cliff and Charlin (1991) gave a formula (p. 700)
identical to that given by Cliff (1996, p. 78), except for the power
of !xx in the denominator of the final term. I presume here that the
4th power (as in Cliff & Charlin, 1991) is correct, rather than the
3rd power (as in Cliff, 1996).


5 The equation presented for "2(!b) is a hybrid of the formula
given by Cliff and Charlin (1991, p. 700) and the one given by
Cliff (1996, p. 79). The formula of Cliff and Charlin includes an
undefined symbol—s22


2 —that is presumed to be a typo because
Cliff’s equation has !22


2 in its place (which corresponds to !yy
2 in the


present notation). The formula of Cliff reorganizes the numerator
from Cliff and Charlin but lacks the denominator.
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If !u
2"#xx$ is negative or 0, the minimum given in footnote 3


in the main text can be used with s#ijxx


2 substituted for s#ijxy


2 .
The unbiased estimate of cov(#xx, #xy) is


covu"#xx, #xy$


!
%4"N " 1$cov"#i. xx, #i. xy$& " %2cov"#ijxx, #ijxy$&


"N " 2$"N " 3$
, (A5)


with


covu"#i. xx,#i. xy$ !


!
i'1


N


"#i. xx " #xx$"#i. xy " #xy$


N
, (A6)


and


covu"#ijxx, #ijxy$


!


!
i'1


N !
j'1


N


"#ijxx " #xx$"#ijxy " #xy$


N"N " 1$
for i # j. (A7)


To calculate !c
2"dyx$, var(#xy) ' !c


2"#a$ from Equation 11 in
the main text, and var(#xx) is computed analogously:


!c
2"#xx$ !


4"N " 2$(#i. xx $ 2(#ijxx


N"N " 1$
, (A8)


with (#i. xx and (#ijxx computed like the unbiased counterparts,
except that 1 is subtracted from the denominators. The
consistent covariance is used to estimate cov(#xx, #xy):


covc"#xx, #xy$


!
%4"N " 2$cov!"#i. xx, #i. xy$& $ %2cov!"#ijxx, #ijxy$&


N"N " 1$


with covc(#i.xx,#i.xy) and covc(#ijxx,#ijxy) computed as in the
unbiased case, except that 1 is subtracted from the denom-
inators.


Variances for Somers’s dxy, !u
2"dxy$, and !c


2"dxy$ are com-
puted analogously. Let #ijyy equal 0 for pairs tied on Y and
1 otherwise, and replace #i.xx, #ijxx, and #xx with #i.yy, #ijyy,
and #yy.


Appendix B


Details About the Infrequent Anomalies From the Simulation


For 5 ) 5 tables, anomalies occurred in the three condi-
tions with N ' 25 and nonzero * and in the condition with
N ' 50 and large *. The Cliff et al. unbiased variances were
not a number (nan) for dyx (1, 2, 5, or 218 times), dxy (2, 5,
or 12 times), and #b (1 time for N ' 25, large *). The
Goodman-Kruskal variance for dyx was nan 14 times (N '
25, medium *), and rs was 1.0 in three or four replications
in three conditions (N ' 25 with medium or large * and
N ' 50 with large *).


For 4 ) 5 tables, the Cliff et al. unbiased variances were


nan for dyx (1, 5, 9, 75, 86, 119, 189, 478, or 2,345 times; the
latter was for N ' 25 and large *), dxy (1, 4, 30, or 110
times), and #b (1, 3, or 67 times). The Goodman-Kruskal
variance for dyx was nan 6 or 46 times, and rs was 1.0 in one
or two replications.
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If !u
2"#xx$ is negative or 0, the minimum given in footnote 3


in the main text can be used with s#ijxx


2 substituted for s#ijxy


2 .
The unbiased estimate of cov(#xx, #xy) is


covu"#xx, #xy$


!
%4"N " 1$cov"#i. xx, #i. xy$& " %2cov"#ijxx, #ijxy$&


"N " 2$"N " 3$
, (A5)


with


cov!"#i . xx,!#i. xy$ !


!
i'1


N


"#i. xx " #xx$"#i. xy " #xy$


N"#
, (A6)


and


cov "#ijxx, #ijxy$


!


!
i'1


N !
j'1


N


"#ijxx " #xx$"#ijxy " #xy$


N"N " 1$"#
for i # j. (A7)


To calculate !c
2"dyx$, var(#xy) ' !c


2"#a$ from Equation 11 in
the main text, and var(#xx) is computed analogously:


!c
2"#xx$ !


4"N " 2$(#i. xx $ 2(#ijxx


N"N " 1$
, (A8)


with (#i. xx and (#ijxx computed like the unbiased counterparts,
except that 1 is subtracted from the denominators. The
consistent covariance is used to estimate cov(#xx, #xy):


covc"#xx, #xy$


!
%4"N " 2$cov!"#i. xx, #i. xy$& $ %2cov!"#ijxx, #ijxy$&


N"N " 1$


with covc(#i.xx,#i.xy) and covc(#ijxx,#ijxy) computed as in the
unbiased case, except that 1 is subtracted from the denom-
inators.


Variances for Somers’s dxy, !u
2"dxy$, and !c


2"dxy$ are com-
puted analogously. Let #ijyy equal 0 for pairs tied on Y and
1 otherwise, and replace #i.xx, #ijxx, and #xx with #i.yy, #ijyy,
and #yy.


Appendix B


Details About the Infrequent Anomalies From the Simulation


For 5 ) 5 tables, anomalies occurred in the three condi-
tions with N ' 25 and nonzero * and in the condition with
N ' 50 and large *. The Cliff et al. unbiased variances were
not a number (nan) for dyx (1, 2, 5, or 218 times), dxy (2, 5,
or 12 times), and #b (1 time for N ' 25, large *). The
Goodman-Kruskal variance for dyx was nan 14 times (N '
25, medium *), and rs was 1.0 in three or four replications
in three conditions (N ' 25 with medium or large * and
N ' 50 with large *).


For 4 ) 5 tables, the Cliff et al. unbiased variances were


nan for dyx (1, 5, 9, 75, 86, 119, 189, 478, or 2,345 times; the
latter was for N ' 25 and large *), dxy (1, 4, 30, or 110
times), and #b (1, 3, or 67 times). The Goodman-Kruskal
variance for dyx was nan 6 or 46 times, and rs was 1.0 in one
or two replications.
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If !u
2"#xx$ is negative or 0, the minimum given in footnote 3


in the main text can be used with s#ijxx


2 substituted for s#ijxy


2 .
The unbiased estimate of cov(#xx, #xy) is


covu"#xx, #xy$


!
%4"N " 1$cov"#i. xx, #i. xy$& " %2cov"#ijxx, #ijxy$&


"N " 2$"N " 3$
, (A5)


with


cov!"#i . xx,!#i. xy$ !


!
i'1


N


"#i. xx " #xx$"#i. xy " #xy$


N"#
, (A6)


and


cov
!
"#ijxx, #ijxy$


!


!
i'1


N !
j'1


N


"#ijxx " #xx$"#ijxy " #xy$


N"N " 1$"#
for i # j. (A7)


To calculate !c
2"dyx$, var(#xy) ' !c


2"#a$ from Equation 11 in
the main text, and var(#xx) is computed analogously:


!c
2"#xx$ !


4"N " 2$(#i. xx $ 2(#ijxx


N"N " 1$
, (A8)


with (#i. xx and (#ijxx computed like the unbiased counterparts,
except that 1 is subtracted from the denominators. The
consistent covariance is used to estimate cov(#xx, #xy):


covc"#xx, #xy$


!
%4"N " 2$cov!"#i. xx, #i. xy$& $ %2cov!"#ijxx, #ijxy$&


N"N " 1$


with covc(#i.xx,#i.xy) and covc(#ijxx,#ijxy) computed as in the
unbiased case, except that 1 is subtracted from the denom-
inators.


Variances for Somers’s dxy, !u
2"dxy$, and !c


2"dxy$ are com-
puted analogously. Let #ijyy equal 0 for pairs tied on Y and
1 otherwise, and replace #i.xx, #ijxx, and #xx with #i.yy, #ijyy,
and #yy.


Appendix B


Details About the Infrequent Anomalies From the Simulation


For 5 ) 5 tables, anomalies occurred in the three condi-
tions with N ' 25 and nonzero * and in the condition with
N ' 50 and large *. The Cliff et al. unbiased variances were
not a number (nan) for dyx (1, 2, 5, or 218 times), dxy (2, 5,
or 12 times), and #b (1 time for N ' 25, large *). The
Goodman-Kruskal variance for dyx was nan 14 times (N '
25, medium *), and rs was 1.0 in three or four replications
in three conditions (N ' 25 with medium or large * and
N ' 50 with large *).


For 4 ) 5 tables, the Cliff et al. unbiased variances were


nan for dyx (1, 5, 9, 75, 86, 119, 189, 478, or 2,345 times; the
latter was for N ' 25 and large *), dxy (1, 4, 30, or 110
times), and #b (1, 3, or 67 times). The Goodman-Kruskal
variance for dyx was nan 6 or 46 times, and rs was 1.0 in one
or two replications.


Received May 15, 2006
Revision received February 15, 2007


Accepted February 22, 2007 !


204 WOODS






image30.png
OVl Ty

b

L)

NN 1)




image21.png




image22.pict

Microsoft_Equation5.bin

image23.png
SE,, ., = +var(txy) + var(tab) - 2cov(ixy.tab)




image24.pict

Microsoft_Equation6.bin

image25.pdf





image36.png




image1.pdf


with larger Y values (and vice versa). As with linear corre-
lation, the association is positive if X and Y both increase
and negative if one increases and the other decreases. How-
ever, monotonicity is less restrictive than linearity; curvi-
linear associations can be monotonic. Also, monotonic re-
lationships can be strong or weak depending on whether it
is permissible for a change in X to be associated with a tie
on Y (or vice versa). A tied pair of observations has the same
value on the variable (i.e., xi ! xj or yi ! yj, where xi and xj


are two different realizations of variable X and yi and yj are
defined analogously). If Y is a strong monotonic increasing
function of X, Y increases with increases in X. Alternatively,
if Y is a weak monotonic increasing function of X, Y either
increases or stays the same with increases in X. Thus, ties on
Y are permitted for weak but not strong monotonic func-
tions. (Strong and weak decreasing functions are defined
analogously.)


Gamma-Family Measures


Table 1 defines the gamma-family indices of ordinal
association. Though some Greek letters are used by con-
vention, all formulas are (unbiased) sample estimators of
population values. Each index is based on a comparison
between pairs of observations on X and pairs of observa-
tions on Y. If an increase in X occurs with an increase in Y


(i.e., xi " xj and yi " yj), or if both X and Y decrease (i.e.,
xi # xj and yi # yj), the X–Y pair is concordant. If X and Y
change in opposite directions (i.e., xi " xj and yi # yj or xi #
xj and yi " yj), the pair is discordant. For all i and j, the total
number of concordant pairs is C, and the total number of
discordant pairs is D. The number of pairs tied on only X,
only Y, or on both X and Y is Tx, Ty, and Txy, respectively.
The sum of C, D, Tx, Ty, and Txy is the total number of
nonredundant pairings.


All indices in Table 1 are a function of the difference
between C and D and (theoretically) range from $1 (perfect
negative association) to 1 (perfect positive association),
with values farther from 0 indicating stronger association. If
X and Y are independent, all indices are 0, but 0 does not
necessarily imply independence because an index can be 0
when X and Y are associated nonmonotonically (e.g., by a
U-shaped relation; Agresti, 1984, p. 160). It can be useful to
plot X and Y to check for nonmonotonicity.


Perhaps the two most well-known members of the gamma
family are % (Goodman & Kruskal, 1954; Yule, 1900) and
&a (Kendall, 1938). All tied pairs are excluded from %,
whereas all pairs are included in &a. In the presence of ties,
the (absolute) upper limit of &a is the proportion of pairs
untied on either variable, rather than 1. An alternative, &b,
was proposed to correct &a for ties (Daniels, 1944; Kendall,


Table 1
Gamma-Family Indices of Ordinal Association


Index Reference


% !
C " D
C # D


Goodman & Kruskal (1954), Yule (1900)


&a !
C " D


1
2


N'N " 1(


!
C " D


C # D # Tx # Ty # Txy


Kendall (1938)


&b !
C " D


!'C # D # Tx('C # D # Ty(


Daniels (1944), Kendall (1945)


e !
C " D


C # D # Tx # Ty


Wilson (1974)


&c !
C " D


1
2
N2


'm " 1(


m


Stuart (1953)


dyx !
C " D


C # D # Ty
! dxy


K , dxy !
C " D


C # D # Tx
! dyx


K
Somers (1962a), Kim (1971)


dyx
LG !


C " D
C # D # 2Ty


, dxy
LG !


C " D
C # D # 2Tx


Leik & Gove (1969)


dK !
C " D


C # D # "1
2
Tx# # "1


2
Ty#


Kim (1971)


Note. C ! number of concordant pairs; D ! number of discordant pairs; N ! sample size; m ! the smaller
number of categories; Tx ! number of pairs tied on X but not on Y; Ty ! number of pairs tied on Y but not on
X; Txy ! number of pairs tied on both X and Y.
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Index Reference


% !
C " D
C # D


Goodman & Kruskal (1954), Yule (1900)


&a !
C " D


1
2


N'N " 1(


!
C " D


C # D # Tx # Ty # Txy


Kendall (1938)


&b !
C " D


!'C # D # Tx('C # D # Ty(


Daniels (1944), Kendall (1945)


e !
C " D


C # D # Tx # Ty


Wilson (1974)


&c !
C " D


1
2
N2


'm " 1(


m


Stuart (1953)


dyx !
C " D


C # D # Ty
! dxy


K , dxy !
C " D


C # D # Tx
! dyx


K
Somers (1962a), Kim (1971)


dyx
LG !


C " D
C # D # 2Ty


, dxy
LG !


C " D
C # D # 2Tx


Leik & Gove (1969)


dK !
C " D


C # D # "1
2
Tx# # "1


2
Ty#


Kim (1971)


Note. C ! number of concordant pairs; D ! number of discordant pairs; N ! sample size; m ! the smaller
number of categories; Tx ! number of pairs tied on X but not on Y; Ty ! number of pairs tied on Y but not on
X; Txy ! number of pairs tied on both X and Y.


186 WOODS






image41.png
" T IT BT




image3.pdf


Variance for !a. Cliff and Charlin (1991) proposed an
unbiased variance estimator for !a expected to perform
better in small samples than asymptotic variance estimators.
It generalizes the unbiased variance derived by Daniels and
Kendall (1947) for the presence of ties. The unbiased SE for
!a is the square root of the unbiased variance:3


"u
2#!a$ !


4#N " 1$s!i. xy


2 " 2s!ijxy


2


#N " 2$#N " 3$
, (7)


where s!ijxy


2 is an estimate of the variance of !ijxy:


s!ijxy


2 !


!
i%1


N !
j%1


N


#!ijxy " !xy$
2


N#N " 1$
for i # j, (8)


and !xy % !a. The other quantity,


s!i. xy


2 !


!
i%1


N


#!i. xy " !xy$
2


N
, (9)


is an estimate of the variance of !i.xy, which is approxi-
mately the mean (over Y) of !ijxy:


!i. xy !


!
j%1


N


!ijxy


N " 1
. (10)


In an empirical example, Cliff and Charlin (1991) used the
t distribution to form CIs based on the unbiased SE, with
df % N & 2.


Cliff and colleagues (Cliff, 1996; Cliff & Charlin, 1991;
Long & Cliff, 1997) also presented a consistent variance
estimator for !a, applicable when there are ties. Following
Long and Cliff (1997, p. 34), the consistent SE for !a is the
square root of the consistent variance:


"c
2#!a$ !


4#N " 2$'!i. xy $ 2'!ijxy


N#N " 1$
, (11)


where '!i. xy and '!ijxy differ from s!i. xy


2 and s!ijxy


2 only because 1
is subtracted from the denominators.


In simulations with continuous data (N % 10, 50, or 200),
CIs for !a computed with the consistent SE outperformed
those with the unbiased SE (Long & Cliff, 1997). Cliff
(1996, p. 63) recommended the consistent variance with CIs
computed based on the normal distribution. Apparently,
neither the unbiased nor the consistent variance has been
evaluated for CIs in simulations with ordinal data.


Variance for Somers’s ds. Cliff and Charlin (1991)
derived asymptotic variance estimators for Somers’s dyx and
!b using the delta method, by formulating them as functions
of !a. Computational details were elaborated upon by Cliff


(1996). Following Cliff (1996, p. 78),4 the asymptotic vari-
ance for Somers’s dyx is


"2#dyx$ !
(var#!xy$)


!xx
2 "


2!xy(cov#!xx,!xy$)


!xx
3 $


!xy
2 (var#!xx$)


!xx
4 ,


(12)


with !xx equal to the probability that a pair is not tied on X:


!xx !


!
i%1


N !
j%1


N


!ijxx


N#N " 1$
, (13)


where !ijxx is 0 for pairs tied on X and 1 otherwise.
Cliff (1996, p. 79) specified that unbiased variances and


covariances are used to compute Equation 12, noting that
the result is not necessarily unbiased. However, in his
description of covariances (Cliff, 1996, p. 73), Cliff ex-
plained that the consistent, rather than unbiased, formulas
are preferable. Thus, there is ambiguity in the computation
of Equation 12. Two asymptotic versions of "2(dyx) are
conceivable: one computed with the unbiased (co)variances
and "u


2#dyx$ and one computed with the consistent (co)vari-
ances, "c


2#dyx$. Computation of "u
2#dyx$ and "c


2#dyx$ is de-
scribed in Appendix A (and formulas are easily modified for
dxy). The unbiased and consistent variances for dyx (or dxy)
apparently have not been compared.


Variance for !b. The asymptotic variance5 for !b (Cliff,
1996; Cliff & Charlin, 1991) is


"2#!b$ !


var#!xy$ " !xy"cov#!xy, !xx$


!xx
$


cov#!xy, !yy$


!yy
#


!xx!yy


$


!xy
2 "var#!xx$


4!xx
2 $


var#!yy$


4!yy
2 $


cov#!xx, !yy$


2!xx!yy
#


!xx!yy
, (14)


3 Because "u
2#!a$ can be negative or 0, Cliff (1996, p. 61)


provided a lower bound for the unbiased variance of !a:


min("u
2#!a$) !


2s!ijxy


2


N#N " 1$
.


4 For "2(dyx), Cliff and Charlin (1991) gave a formula (p. 700)
identical to that given by Cliff (1996, p. 78), except for the power
of !xx in the denominator of the final term. I presume here that the
4th power (as in Cliff & Charlin, 1991) is correct, rather than the
3rd power (as in Cliff, 1996).


5 The equation presented for "2(!b) is a hybrid of the formula
given by Cliff and Charlin (1991, p. 700) and the one given by
Cliff (1996, p. 79). The formula of Cliff and Charlin includes an
undefined symbol—s22


2 —that is presumed to be a typo because
Cliff’s equation has !22


2 in its place (which corresponds to !yy
2 in the


present notation). The formula of Cliff reorganizes the numerator
from Cliff and Charlin but lacks the denominator.
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